《前沿 | 嗜热蓝藻捕光天线的非相干超快能量传递》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: 胡思思
  • 发布时间:2024-09-20
  • 在国家自然科学基金委、山东省自然科学基金委和中国科学院的支持下,中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室翁羽翔团队(SM6组)在光合捕光体系的能量转移机制方面取得了新的进展。团队应用自行研制的偏振控制二维电子态相干光谱仪,揭示了嗜热蓝藻捕光天线藻蓝蛋白Phycocyanin 620 (PC620) 的共振传能机制。

    光合作用是地球上最重要的能量转换过程。捕光天线复合体负责光能吸收并将其传递至反应中心,该过程的光量子效率几乎接近100%。由于藻类在水下生存的光照条件较差,其光合机制一直受到广泛关注。PC620是蓝藻中重要的捕光天线蛋白,单体内包含三个藻蓝胆素分子(α84,β84和β155),形成三聚体后形成α84-β84色素对。PC620与别藻蓝蛋白APC中的α84-β84色素对在结构上极为相似,具有相同的分子间距以及理论预测的分子间耦合强度。翁羽翔团队近期利用二维电子态相干光谱方法证实了APC中的α84-β84色素对存在激子-振动耦合相干,而且可以通过量子相位同步机制显著延长相干态寿命。然而以往的实验研究表明, PC620似乎不存在类似于APC中的量子相干态传能路径。

    二维电子态相干光谱具备高时间分辨率(~10fs),可以直接探测体系内的量子相干现象。由于PC620光谱展宽非常严重,难以直接分辨体系中的能量转移过程。实验采用偏振控制二维光谱,有效消除了光谱扩散的干扰。实验确认了α84向β84,β155向β84和β155向α84的能量转移寿命分别约400fs,6~8 ps和66ps,符合共振传能机制,证实PC620的能量转移是非相干过程。通过分析动力学上的振荡信号,可以确认体系中所有的振动模都起源于分子内的纯振动相干。并通过监测PC620激发态溶剂化过程中的能量弛豫,发现所有的色素分子振动模都参与能量耗散。而在APC中已经确认,参与激子-振动耦合量子相位同步的的振动模不参与激发能耗散。对比两者的色素结构,发现PC620中的α84相比于APC的α84,其吡咯环间的二面角更大。由此可见PC620中α84的扭曲构象倾向于形成局域电子态,APC中α84的平面构象倾向于形成离域电子态。色素对的构象差异(图2)导致其在PC620中无法形成激子对。APC中α84-β84色素对相干态的弛豫时间约500飞秒,PC620中α84-β84激发态振动波包的弛豫时间约为200飞秒,进一步说明APC中量子激子-振动耦合相位同步对量子相干态的保护作用。从而为APC中观测到的激子-振动耦合量子相位同步提供了一个的绝佳反例。

    图 1:PC620能量转移模型. 左侧为二维电子光谱实验中四个脉冲的偏振方向,右侧为不同色素之间的能量转移寿命

    图 2:(a) 左图,PC620 (APC) 中α84(红色)和β84(蓝色)藻蓝胆素的晶体结构,PDB ID 1I7Y (1ALL),右图:α84和β84四吡咯环结构示意图和相邻吡咯环之间的二面角。(b) PC620 和APC的相干态寿命

  • 原文来源:https://doi.org/10.1063/5.0222587
相关报告
  • 《前沿 | 超快激光器的烧蚀动力学研究》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2023-04-03
    • 高频飞秒激光器(可达若干吉赫兹,GHz)适用于调节和提高激光加工质量,以改善材料的物理化学性能。尽管烧蚀靶材动力学十分复杂,但是,材料科学家仍不能探索GHz飞秒激光器的激光-材料相互作用。 图1 (A)用 ICCD 相机对 GHz 脉冲烧蚀动力学进行时间分辨散射和发射成像的光学装置。在1030 nm 处的500飞秒激光在垂直聚焦在样品上。用532nm 连续波探针激光进行散射成像。在不使用探针激光的情况下,利用等离子体诱导的自发过程在500-930 nm 的光谱范围内进行成像。(B)单脉冲飞秒激光器的总通量为18.7 J/cm2的拥有WLI(顶部)和 SEM (底部) ;(C) GHz 脉冲为50脉冲,(D) GHz 脉冲为200脉冲。比例尺,5微米 近日,加州大学伯克利分校激光技术和机械工程专业的Minok Park团队通过时间分辨散射成像、发射成像和发射光谱等技术,研究了GHz飞秒激光脉冲对铜的烧蚀动力学,以上研究成果已发表在期刊《Science Advances》上。 该团队将以上几种方法结合起来,揭示了GHz飞秒激光如何与材料相互作用,它能够快速熔化并使其喷射出来。由于残留物有限,材料喷射过程在爆发照射后即停止,这样的过程可深入了解GHz飞秒激光激发的复杂烧蚀机制,并解释横切过程、纳米\微加工和光谱学中的最佳激光条件。 图2 单脉冲飞秒激光辐照。时间分辨(A)发射成像,(B)光发射光谱学和(C)散射成像显示在18.7 J/cm2的通量下,在不同的时间尺度上的烧蚀动力学。分别在100ns、200ns、500ns 和1μs 不同的 ICCD 下获得散射图像。这些图像中的蓝色线条代表铜靶表面,线条下面的图像是抛光铜表面的镜面反射。白色比例尺,50微米; 蓝色比例尺,10微米。 吉赫兹飞秒激光烧蚀 激光烧蚀是一种通过高功率激光相互作用逐渐去除材料表面的过程,可用于能量收集元件、存储元件、生物医学、光电子学和光谱学等领域。在此之前,通过超快飞秒激光烧蚀,材料科学家已实现材料加工和烧蚀的直接化、单一步骤化和无化学化。这一过程适用于精确调节烧蚀特性。 Park团队开发了多种方法实时监测激光烧蚀动力学。通过比较GHz飞秒激光烧蚀和飞秒激光烧蚀结果,他们发现,两种方法的吉赫可以加快熔融液体物质的喷射,停止辐射后,物质不再飞溅,因此,该团队直接了解了飞秒激光烧蚀的动力学和主要物理机制。 超快激光实验 在实验过程中,该团队使用一个光学系统来研究大气压下单飞秒激光脉冲和GHz飞秒脉冲对铜的烧蚀机制。通过时间分辨散射和发射图像,他们可视化发光和非发光样品。此外,他们用白光干涉测量法和扫描电子显微镜观察深度为500 nm的烧蚀坑形态。科学家们注意到在辐照点上出现了不规则的、重新固化的结构。与单脉冲辐照相比,重频提高了GHz脉冲的烧蚀效率。 图3 烧蚀动力学总结。(A)单脉冲飞秒激光和 GHz 脉冲诱导的实验喷射的 R-t 图。(B)单脉冲飞秒激光和(C) GHz 飞秒激光烧蚀动力学的实验研究。 可视化结果 此外,该团队观察了时间分辨图像、发射光谱和散射图像,以研究单脉冲飞秒激光在铜表面的烧蚀动力学(如图2)。图像显示从基底喷射出两种不同的粒子类型,包括在不同时间尺度之后释放的粒子类型: (1)在0-200纳秒延迟之后,和(2)在300纳秒至4微秒之间喷射的粒子类型。 此外,他们探索了时间分辨率的发射成像和光谱学,以及由50个脉冲组成GHz激发的烧蚀迸发图像。在实验过程中,他们注意到,球形的铜等离子体持续了30纳秒。 激光烧蚀动力学 经过200纳秒后,该团队没有观察到激光-物质相互作用区中心的喷射物,这表明目标没有被进一步烧蚀。这种行为明显不同于单脉冲烧蚀的动力学行为。 他们设计了两种促进物质喷射过程的机制,包括(1)物质在中心的汽化,和(2)液体通过快速、径向向外的流体运动形成熔池边缘的喷射,以反冲由汽化产生的压力。当铜纳米颗粒从熔池边缘喷出时,烧蚀坑表面仍有少量液体保持冰冻状态,他们利用扫描电子显微镜证实了这一点。 比较不同的激光烧蚀动力学过程 该团队使用时间分辨的发射成像,发射光谱和由千兆赫飞秒激光脉冲驱动的烧蚀散射图像。当他们在300秒之后释放散射图像时,喷出物显示了辐照点是如何冷却下来以抑制材料喷溅的。 通过比较了两种实验条件,他们进一步研究了由GHz脉冲驱动的铜的早期烧蚀动力学,并发现200脉冲驱动的GHz脉冲与50脉冲驱动的GHz脉冲驱动的铜具有明显不同的烧蚀动力学。与单脉冲照射相比,这些结果直接证实了GHz激光诱导烧蚀的不同机制。 展望 Minok Park 团队通过使用单飞秒激光脉冲和50-200脉冲的GHz脉冲多模式探测方法观察铜的烧蚀动力学。单脉冲飞秒激光在不同时间尺度上产生了两种不同喷射速度的粒子。 这些结果为全面了解GHz飞秒脉冲的熔融机制提供了实验依据,这对于探索激光加工、机械加工、印刷和光谱诊断等领域的各种应用至关重要。
  • 《突破 | 隐芽海藻捕光天线通过量子相位同步实现长寿命量子相干态》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2025-06-30
    • 光合作用是地球上最重要的能量转换过程。捕光天线蛋白负责捕获光能并将其传递至反应中心,该过程的量子效率接近100%。由于水下透射光较弱,水下生存的藻类必须进化出与环境相适应的高效捕光和传能机制。量子相干传能被认为是一种优于经典传能路径的新机制,但捕光天线蛋白如何在室温及生命环境中保持数百飞秒的长寿命的量子相干态一直备受关注,迫切需要在理论和实验上给予双重肯定。中国科学院物理研究所/北京凝聚态物理国家研究中心软物质物理实验室翁羽翔团队(SM6组)从理论和实验上证实别藻蓝蛋白allophycocyanin (APC)中的α84-β84藻蓝色素分子形成的激子对通过量子相位同步机制实现500飞秒的长寿命量子相干态(Zhu et al., Nat. Commun., 15, 3171, 2024),并证实色素扭曲构象导致藻蓝蛋白phycocyanin 620 (PC620)中不存在色素激子对及量子相干态传能(Wang et al., J. Chem. Phys., 161, 085101, 2024)。 本团队在另外一种海藻捕光天线,即隐芽海藻捕光天线藻红蛋白phycoerythrin 545 (PE545) 中,再一次利用二维电子态相干光谱证实了藻红色素激子对(PEB 50/61C-PEB 50/61D)存在270飞秒的长寿命量子相干态。PE545包含八个色素,但仅存在一对激子耦合色素对。该色素对的耦合强度为92 cm-1,能级差为1080 cm-1,并存在与激子对能隙近共振的1150 cm-1振动模。不同色素的吸收光谱高度重叠,严重干扰了对PE545量子相干态的指认。本工作利用双垂直交叉偏振瞬态光栅实验证实近共振模1150 cm-1 参与激子—振动耦合相干态传能。利用全平行偏振、激发态分辨的二维电子光谱,确认了PEB 50/61C-PEB 50/61D色素对的低能级激子态的相干态寿命约为270飞秒,而对照样品PE545单体的相干态寿命仅为120飞秒。同时,近共振模1150cm-1仅在低能级激子态的动态斯托克斯位移相干光谱中消失,说明该振动模不参与低能级激子态的能量耗散,促进了长寿命的量子相干态的形成。本工作通过探究PE545中的量子相干传能过程,揭示分子二聚体通过激子—振动耦合模的对称分量和反对称分量之间的相位同步,得到了长寿命的量子相干态。这是自然界应用量子力学抵御环境噪声、优化传能路径的普适策略。 图 :(a) PE545量子相位同步模型;(b) PE545二聚体和单体的动态斯托克斯位移,波包平均寿命分别为270飞秒和120飞秒