《三芳基甲烷控制植物细胞分裂》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-11-28
  • Dr. Minako Ueda, Dr. Masakazu Nambo of the Institute of Transformative Bio-Molecules (ITbM) of Nagoya University and their colleagues have reported in the journal Plant and Cell Physiology, on the development of a series of triarylmethane compounds, which were tested on plant cells to see their effect on cell division. Through live cell imaging, they were able to identify a new triarylmethane compound that can rapidly inhibit cell division in plant cells.

    They also found that this new compound does not have an effect on the cell division of animal cells, and that cell division restarts in plant cells upon removal of the compound. Being able to control the cell division in plant cells may be effective in controlling plant growth. Thus, the selectivity and reversibility of this new triarylmethane compound on the cell division of plant cells makes it a good candidate for an agrochemical.

    Plant growth occurs by increasing the number of cells by cell division followed by enlargement of the cells. Thus, it has been considered that if there is a way to control cell division in plants, this will lead to the control of plant growth in a range of plant species. Although various compounds that can control cell division in plants have been explored in the past, they have mainly resulted in damage to the plant shape or irreversible inhibition of cell division despite removal of the compounds.

    "As part of ITbM's interdisciplinary research initiative, we decided to search for new compounds that can inhibit the cell division in plants without causing damage to them," says Minako Ueda, a plant biologist and a leader of this study. "Being in the Mix Lab (special labs that have researchers from different disciplines mixed together) at ITbM, I was able to talk to an organic chemist, Masakazu Nambo, who suggested the use of triarylmethane compounds for cell division inhibition in plant cells," she continues.

    "We had reported a new catalytic reaction in December 2013, to rapidly synthesize triarylmethanes in 3 steps from readily available starting materials, using a palladium catalyst," says Masakazu Nambo, an organic chemist and another leader of this study. "Triarylmethanes have not really been used before on plants, but we were able to visualize their effect on Tobacco plant cells using live cell imaging. We started this research about 3 years ago, but we were fortunate to be able to identify a triarylmethane compound that can rapidly inhibit cell division in plants," he continues.

    Triarylmethanes are a group of compounds that derive from methane (a molecule consisting of carbon with 4 hydrogen atoms attached to it) and consist of a carbon atom center with 3 aryl (aromatic ring) groups and a hydrogen atom. This structure can be found in organic materials, such as dyes and fluorescent probes, as well as in natural products. Some compounds containing the triarylmethane moiety are known to exhibit anticancer properties, and many new compounds have been synthesized to investigate their bioactivities.

    "Our palladium-catalyzed sequential arylation reaction has been highly useful to rapidly synthesize a variety of triarylmethanes to be used for testing their effect on the cell division in plants," says Nambo.

    "We used a Tobacco plant cell attached with a fluorescent probe to visualize the cell division process," says Ueda. "We added the triarylmethane compounds to the cultivated cells and investigated whether cell division had occurred or not by realtime live cell imaging."

    "As a result of screening about 200 compounds, we found that (3-furyl)diphenylmethane (chem7), which is a triarylmethane that contains 2 phenyl groups and a furyl (a 5-membered aromatic ring containing 4 carbons and an oxygen atom in the ring) group, had strong inhibitory activity on plant cell division," says Ueda.

    When the furyl moiety was replaced with other aromatic groups, or when one of the benzene rings was removed, the cell division inhibitory activity was not observed, suggesting that a triarylmethane structure containing both the benzene and the furan rings are necessary for their bioactivity.

    "Although I did not have any issues about working with compounds directly synthesized by chemists, I was initially surprised to receive compounds that were not necessarily soluble in the solvents that I was using in my biological experiments," says Ueda. "It was exciting to test new compounds and I was astonished by the speed that the compounds were being synthesized. The speed of compounds being generated was faster than the speed that we could test them on the cells."

    The group also tested whether chem7 could inhibit cell division in other plants, or in other developing tissues. By applying chem7 to the young seeds and roots of a model plant, Arabidopsis thaliana, the group found that rapid inhibition of cell division was observed in both tissues.

    "We saw that chem7 had hardly any effect on the shapes of the cells and tissues, thus, suggesting that chem7 stops cell division in plant cells, but does not cause any severe damage to the shapes," describes Ueda. "With the help of animal biologists, we found that chem7 had no effect on budding yeasts and human cells, which indicates that chem7 does not inhibit the cell division of animal cells."

    Cell division consists of several phases, including the M phase where the cells actually divide (M = mitosis), the S phase where the DNA is copied and prepares for division (S = synthesis) and the G1/G2 phase in between (G = gap). These phases (cell cycle) are repeated leading to cell division. In order to figure out which phase that chem7 actually acts upon, Ueda and her team used two fluorescent proteins of different colors to visualize the process of the cell cycles in the root of Arabidopsis thaliana. (Green indicates the M phase and red indicates the S and G2 phases.)

    "As the roots of Arabidopsis thaliana contain cells at various phases, it was possible to observe different phases, shown in green and red," explains Ueda. "Upon addition of chem7 to the roots, we found that both colors existed but the area that contains fluoresced cells (tissues with high cell division activity) became smaller."

    This indicates that chem7 does not target a specific plant cell phase, but exhibits cell inhibitory activity regardless of the phase. The group concluded that chem7 causes no severe damage to the shapes of cells and tissues by being able to rapidly stop the cell activity at any cell phase.

    In addition, when chem7 was washed away from the roots and cultivated cells treated with chem7, cell division was observed again, indicating that the effect of chem7 is not lethal.

    "Through the collaboration with chemists and biologists, we were fortunate to discover a new compound that can selectively inhibit the cell division of plant cells regardless of the cell phase," says Ueda and Nambo. "chem7 rapidly stops cell division and plant growth without causing drastic damage to the shapes or functions of the cells."

    "It was nice to be able to come together and discuss research with people from different research fields. We are currently carrying out further studies to generate new compounds that can rapidly and reversibly control plant growth without causing harm to humans and bacteria in the surrounding environment, which can potentially work as agrochemicals," they speak.

  • 原文来源:https://www.sciencedaily.com/releases/2016/11/161125084223.htm
相关报告
  • 《科学家首次实现海洋海绵快速细胞分裂》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2019-12-04
    • 脊椎动物、昆虫和植物细胞系是许多学科研究的重要工具,包括人类健康、进化和发育生物学、农业和毒理学。目前科学家们已经为包括淡水和陆地无脊椎动物在内的许多生物建立了细胞系。 尽管数十年来人们付出了许多努力,但仍然没有建立包括海洋海绵在内的海洋无脊椎动物的细胞系,海洋海绵是成千上万种具有药学相关特性的新型化学品的来源。这些化学品的供应也是海绵衍生药物研发的瓶颈,因为野生收获在生态上是不可持续的,并且由于许多生物活性化合物的复杂性,化学合成具有挑战性。 来自佛罗里达大西洋大学(FAU)海港分校海洋研究所的研究人员和荷兰瓦格宁根大学的合作者在海洋无脊椎动物(海绵)细胞培养方面取得了突破。他们首次实现了细胞快速和大量分裂。他们已经证明氨基酸优化的营养培养基刺激九种海绵动物的快速细胞分裂。海洋无脊椎动物(海绵)细胞异常快速分裂的证明,以及研究人员传代培养细胞的能力,是海洋生物技术的突破性发现。 这项研究成果发表在《科学报告》(Scientific Reports)上,结果显示速度最快的分裂细胞在不到一小时内翻了一倍。他们三个物种的培养物被继代培养3至5次,继代培养后平均有5.99个群体倍增,寿命为21至35天。 这些发现为开发海洋无脊椎动物细胞模型奠定了基础,以帮助人们更好地了解动物的早期进化,确定次生代谢产物的作用,并预测气候变化对珊瑚礁群落生态的影响。此外,海绵细胞系可用于扩大海绵衍生化学品的生产规模,以用于临床试验,并开发抗癌和其他疾病的新药。 FAU海港分校资深作者兼研究教授Shirley Pomponi博士指出,海绵细胞系可以作为模型来理解海绵中次生代谢物的作用,利用这些信息来开发新的药物发现模型,并扩大海绵衍生生物活性化合物的生产,用于新药。普通珊瑚礁海绵的细胞系还可以用于量化气候变化(如海洋变暖和酸化)对吸收溶解的有机物质(碳循环的'海绵环假说'的主要组成部分)的影响,还可以用来检验随着气候变化珊瑚礁可能变成海绵礁的假说。 海绵(Phylum Porifera)是最古老的后生动物之一,被认为是理解动物进化和发育的关键。它们是许多海底海洋生态系统的关键组成部分。从潮间带到深海,全世界有超过9,000种上述物种。在最古老的后生动物中,海绵已经进化出多种策略来适应不同的环境。因为它们成年后是固定着的,所以它们进化出了复杂的化学系统,用于交流、防御捕食者、防污剂,以防止其他生物在它们上面生长,并防止从水中过滤出来的微生物感染。这些化学物质与在整个进化历史中一直保存下来的分子相互作用,并参与人类疾病过程,例如细胞循环、免疫和炎症反应以及钙和钠的调节。 多年来,FAU海港分校的科学家一直在收集不寻常的海洋生物,其中许多来自深水栖息地,它们是新颖的天然产品的来源,大部分样本主要来自大西洋和加勒比海地区,其他的则来自加拉帕戈斯群岛,西太平洋,地中海,印度太平洋,西非和白令海。FAU海港分校的药物发现计划寻找胰腺癌和传染病的治疗方法,他们的科学家还与其他科学家合作,研究其他形式的癌症,疟疾,结核病,神经退行性疾病和炎症。 (编译 刁何煜)
  • 《加速分裂:不稳定的蛋白质是细胞分裂的主要开关》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2019-11-05
    • 极不稳定的蛋白质Cln3似乎是激活发芽酵母中细胞分裂的主要开关。当蛋白质合成速率超过细胞体积增加速率时,Cln3浓度仅达到足以触发细胞分裂过程的水平。格罗宁根大学的科学家与瑞士的同事于11月4日在《自然细胞生物学》杂志上发表了这一发现。 尽管细胞无法思考,但它们仍必须根据环境条件“决定”是分裂还是进入休眠状态。三十年前,发现细胞周期蛋白依赖性激酶(CDK)复合物是细胞分裂周期的主要调节因子。然而,直到今天,细胞决定启动新分裂周期的确切机制仍不清楚。 振荡 三年前,格罗宁根大学的系统生物学家Matthias Heinemann证明,细胞代谢的振荡可能是发芽酵母中细胞周期的“导体”。他的研究小组现在发现了一个新难题,一种叫做Cln3的酵母蛋白。先前已知Cln3与CDK形成复合物并进入运动过程,提示细胞启动新的分裂周期。 “但是,由于人们认为Cln3的浓度在细胞分裂周期中保持恒定,因此尚不清楚CIn3如何影响细胞分裂的决定,” Heinemann解释说。而且,Cln3非常不稳定,并且很难测量其浓度,因为一旦产生,它几乎立即被分解。 为了调查Cln3在细胞决定启动新分裂周期中的作用,Heinemann及其研究团队(包括他的同事Andreas Milias-Argeitis)共同实施了另一种方法来测量CIn3随时间的生产率。 通常,人们会在Cln3基因旁边添加绿色荧光蛋白(GFP)的基因。 当产生Cln3-GFP时,这将导致荧光。 “但在这种情况下,GFP会与Cln3一起迅速分解,无法检测到荧光,” Milias-Argeitis解释说。 通过在Cln3和GFP之间包含一个额外的小肽,可以解决此问题。 “一旦产生了新的融合蛋白,这种额外的肽就会自Cln3自身裂解并释放GFP。因此,Cln3被分解,但GFP保留在细胞中并且可以被检测到。” 因此,可以测量Cln3的生产率。 该研究的第一作者Athanasios Litsios提出了自裂解肽的概念,他对微流控芯片中生长的单个细胞进行了许多艰苦的GFP荧光测量,并在显微镜下进行了观察,同时还测量了细胞体积。这些测量结果表明,Cln3的浓度在细胞决定启动分裂周期之前达到峰值。 Cln3浓度的测量较早完成,但正如Heinemann所解释的那样,仅使用在大型细胞群体中平均的技术。 “在那种情况下,Cln3浓度的峰值在整个细胞群体中平均。” 这种峰值蛋白质水平的显着之处在于它发生在蛋白质生产速度超过细胞体积增加的阶段。小ilia虫病解释如下。 “这意味着蛋白质合成与代谢过程之间存在脱钩,从而导致细胞体积增加。”这种解耦可以解释海涅曼先前观察到的某些代谢振荡,并且在细胞分裂周期的启动中也起作用。 有趣的 这项研究的发现表明,进入细胞分裂周期的决定是由Cln3浓度的峰值触发的,而Cln3浓度的峰值又由蛋白质合成速率的提高驱动。也许这个过程表明了一种机制,该机制使细胞能够“评估”环境条件是否有利于蛋白质生产-这一过程对于细胞分裂很重要。 Heinemann观察到,“在细胞决定开始新的分裂周期之前蛋白质产量增加的观察结果非常有趣。我们将必须对此进行调查,以找出造成这种增加的过程,当然,还涉及什么分子机制。”