《BMS“进军”反义药物:发现控制3D分子结构的新方法》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-08-06
  • 近年来,反义药物在临床前实验及临床试验中取得了喜人的结果,反义技术也得到进一步发展。反义技术是一种全新的药物设计方法,主要是根据碱基互补配对原则和核酸杂交原理,从基因复制、转录、剪接、转运翻译等水平上调节靶基因的表达,干扰遗传信息从核酸向蛋白质的传递,从而达到抑制、封闭或破坏靶基因的目的。

    日前,百时美施贵宝(BMS)与斯克利普斯研究所(Scripps Research Institute)合作的一项研究提出了一种可以更快开发新药并改进药品制造的解决方案,将有助于基因医学的发现、传递和开发,让更多的患者受益。

    每当患者服用一种反义药物时(如脊髓性肌萎缩治疗药物Spinraza),实际上可能会接受数千种不同类型的化合物,这些化合物的空间结构往往各不相同。鉴于生物分子的三维结构经常影响它们的功能,科学家们已经建议使用“立体定义系统”,即药物原子在空间排列受到严格控制,这样做可能使药物更稳定、更安全、更有效。

    使用现有方法,即使少量立体定义的异构体也很难制造出来,更不用说临床试验中需要制造成千上万的特定立体异构体,再从中筛选出作为治疗最有效或者反过来可能引起副作用的药物。参与此次试验的Phil Baran教授表示,两家公司参与完成的这项技术突破使用了一种不同形式的磷(P),而不是传统上用来启动寡核苷酸生产的方法。

    BMS与斯克利普斯研究所在合成过程中完成了高度控制,并基于P(V)设置的活性物质创建了新试剂类,以便支持更快捷的方法精确地获得需要的立体异构体。这种方法被称为PSI,预计该方法可扩展用于早期筛查和制造工作。虽然这种新工具的应用与任何形式或治疗领域无关,但百时施贵宝在Science杂质发表的论文中记录了两个具体的例子:Spinraza的反义寡核苷酸和环状二核苷酸(CDNs),可以通过靶向定位STING蛋白,它具有作为癌症免疫疗法的潜力。

    反义药物主要指反义寡核苷酸(ODNs),根据核酸杂交原理,反义药物能与特定基因杂交,在基因水平干扰致病蛋白的产生过程,即干扰遗传信息从核酸向蛋白质的传递。蛋白质在人体代谢中扮演非常重要的角色,无论是宿主疾病还是感染疾病,几乎所有的人类疾病都是由蛋白质的异常引起的。传统药物主要是直接作用于致病蛋白本身,反义药物则作用于产生蛋白的基因,因此可广泛应用于多种疾病的治疗,如传染病、炎症、心血管疾病及肿瘤等。

    与传统药物比较,反义药物更具有选择性,因此也更高效低毒。目前,反义药物研究仍存在一些问题,如最佳作用靶序列的确定、透膜性及靶向性、非反义作用及合成成本等。细胞解链及编辑RNA进化机理的阐述、计算机辅助药物设计及生物芯片技术和发展可能有助于反义药物作用靶序列的选择。BMS化学和合成开发部负责人Martin Eastgate表示,“对BMS而言,PSI试剂是我们可以利用的全新的反应平台,他们将在未来的创新方面取得什么突破,我们十分期待。”

  • 原文来源:http://news.bioon.com/article/6725540.html
相关报告
  • 《制造轻质晶体结构的新方法——3D打印》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-19
    • 仿生学是一门跨学科的研究领域,它模仿生物过程,为复杂的人类问题设计解决方案——结合了金属和聚合物增材制造技术(即3D打印)的发展,已经在生产更耐用的轻质材料和结构方面取得了突破。新加坡ASTAR的科学家们调查研究发现,医学植入材料、汽车和航天部件都将从中受益。 晶格结构如图所示,从上到下的直径分级和空间分级都是统一的标准。图片来源: ASTAR 和 Elsevier 据全球研究机构ASTAR称,铸造和机加工等传统制造工艺并不适合于建造坚固的轻质结构,并且限制了设计的可能性。ASTAR的研究人员发明了一种新方法,使用增材制造技术制造轻质晶体结构,并且提高了其结构的强度和刚度,为制造新型吸水材料和夹层结构开辟了新道路。 此项目由新加坡制造技术研究所(ASTAR)的科学家Stephen Daynes和新加坡国立大学的研究人员合作完成,Stephen Daynes解释说:“此种方法制造的晶格结构优于传统固体材料的结构性能,可用于制造轻质夹层芯、医用植入物材料和具有特殊机械和热性能的特定晶格材料。利用一种新的仿生学方法,我们能够创造出类似于竹子和人类骨骼的细胞和晶格结构。” 研究人员通过结合拓扑和尺寸优化的方法,确定了晶格中被称为等静线的主应力线。由ASTAR发布的新闻指出,这种方法可以调整结构中的每个晶胞的大小、形状和方向,从而显著减少相邻晶胞之间的应力。研究人员称,这种设计方法使晶体刚度提高了172%,强度提高了100%。 Daynes说:“我们的技术可以创造出轻量级的功能梯度晶格,大大提高了增材制造夹层结构的刚度和强度,并且不会增加它们的质量。这些结构特别适合于增材制造过程,因为它们基本不受制造复杂性的约束。” Daynes说:“我们计划将这种方法应用到三维的应力场中,通过采用空间梯度的晶格产生更新颖、更有效的材料。”
  • 《科学家发现控制纳米晶体的电子性质的新方法》

    • 来源专题:可再生能源
    • 编译者:pengh
    • 发布时间:2017-08-14
    • 来自耶路撒冷希伯来大学、石溪大学和美国能源部的研究人员发现了一种重要的半导体调制方法的新效果。该方法通过在材料的结构中创建开放空间或“空位”,使科学家能够调整半导体纳米晶(SCNCs)的电子特性,这些半导体粒子的尺寸小于100纳米。这一发现将促进智能窗户等新技术的发展,这些技术可以根据需求改变不透明。 科学家们使用一种叫做“化学掺杂”的技术来控制半导体的电子特性。在这个过程中,化学杂质——来自不同材料的原子——被添加到半导体中,以改变其电导率。虽然SCNCs是可行的,但由于它们的尺寸很小,所以很困难。在化学掺杂过程中添加的杂质含量非常小,为了使纳米晶体正确地掺杂在晶体中,只有少量的原子可以被加入到晶体中。纳米晶体也倾向于排除杂质,进一步使兴奋剂的过程复杂化。 为了更容易地控制SCNCs的电子特性,研究人员研究了一种叫做空位形成的技术。在这种方法中,杂质没有加入到半导体中;相反,其结构中的空缺是由氧化还原反应(redox)反应形成的,反应是一种化学反应,电子在两种物质之间转移。在这种转移过程中,一种掺杂发生在缺失的电子上,称为孔洞,在晶体结构中自由移动,极大地改变了SCNC的导电性。 来自耶路撒冷希伯来大学的纳米技术学家乌里·巴因(Uri Banin)说:“我们还确定了空缺形成的兴奋剂反应的效率。”“在更大的SCNCs中,空缺的形成实际上更有效率。” 在这项研究中,研究人员调查了硫化铜纳米晶(半导体)和碘(一种化学物质)之间的氧化还原反应,以影响氧化还原反应的发生。                                                               ——文章发布于2017年8月10日