《制造轻质晶体结构的新方法——3D打印》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-03-19
  • 仿生学是一门跨学科的研究领域,它模仿生物过程,为复杂的人类问题设计解决方案——结合了金属和聚合物增材制造技术(即3D打印)的发展,已经在生产更耐用的轻质材料和结构方面取得了突破。新加坡ASTAR的科学家们调查研究发现,医学植入材料、汽车和航天部件都将从中受益。

    晶格结构如图所示,从上到下的直径分级和空间分级都是统一的标准。图片来源: ASTAR 和 Elsevier

    据全球研究机构ASTAR称,铸造和机加工等传统制造工艺并不适合于建造坚固的轻质结构,并且限制了设计的可能性。ASTAR的研究人员发明了一种新方法,使用增材制造技术制造轻质晶体结构,并且提高了其结构的强度和刚度,为制造新型吸水材料和夹层结构开辟了新道路。

    此项目由新加坡制造技术研究所(ASTAR)的科学家Stephen Daynes和新加坡国立大学的研究人员合作完成,Stephen Daynes解释说:“此种方法制造的晶格结构优于传统固体材料的结构性能,可用于制造轻质夹层芯、医用植入物材料和具有特殊机械和热性能的特定晶格材料。利用一种新的仿生学方法,我们能够创造出类似于竹子和人类骨骼的细胞和晶格结构。”

    研究人员通过结合拓扑和尺寸优化的方法,确定了晶格中被称为等静线的主应力线。由ASTAR发布的新闻指出,这种方法可以调整结构中的每个晶胞的大小、形状和方向,从而显著减少相邻晶胞之间的应力。研究人员称,这种设计方法使晶体刚度提高了172%,强度提高了100%。

    Daynes说:“我们的技术可以创造出轻量级的功能梯度晶格,大大提高了增材制造夹层结构的刚度和强度,并且不会增加它们的质量。这些结构特别适合于增材制造过程,因为它们基本不受制造复杂性的约束。”

    Daynes说:“我们计划将这种方法应用到三维的应力场中,通过采用空间梯度的晶格产生更新颖、更有效的材料。”

相关报告
  • 《纳米3D打印异质金属氧化物新方法》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-07-03
    • 近日,华中科技大学武汉光电国家研究中心熊伟教授团队提出了一种新颖的金属氧化物纳米3D打印方法。研究团队受组氨酸在血液中运输微量元素的启发,研究制备出了金属离子协同配位的水溶性(MISCWS)树脂,进而实现了各种金属氧化物的3D微纳结构与功能器件的制造。此外,MISCWS树脂的协同配位效应使聚合物内的无机质量分数增加了2.54倍,有效地降低了金属氧化物3D微纳结构的形貌畸变。该研究为制造基于金属氧化物的各种微型功能器件铺平了道路,相关研究成果以 3D Nanoprinting of Heterogenous Metal Oxides with High Shape Fidelity 为题发表在《Advanced Materials》上。 金属氧化物具有半导体性、压电性、光学透明性和赝电容性等独特性质,是制造各种功能器件和集成系统所不可缺少的材料。3D微纳结构不仅能够大幅提升金属氧化物功能器件的性能,还能够实现一些2D器件无法实现的功能,如3D光子晶体、各向异性的机电响应和高强度的轻质超材料结构。得益于亚100纳米分辨率下几乎不受限制的3D打印自由度,双光子聚合成形技术具有打印精细复杂金属氧化物3D结构的潜力。近年来,尽管金属氧化物的微纳3D打印已取得了诸多进展,但一直以来始终面临着材料种类受限、形貌畸变严重、制造速度低下以及异质集成困难的挑战。 针对上述难点,熊伟教授团队设计出了一种咪唑和丙烯酸协同配位水中金属离子的物理机制,并利用该机制开发出了一系列MISCWS树脂,用于各种金属氧化物的纳米级3D打印,包括MnO2、Cr2O3、Co3O4、Al2O3、NiO、MgO和ZnO等,如图1所示。此外,丙烯酸和1-乙烯基咪唑与金属离子的协同配位作用可使得3D聚合物模板中的金属离子含量增加到30.5 wt%。该含量比以往文献中所报道的金属含量值至少高出2.54倍,进而有效缓解了热解后结构的形貌畸变。 研究团队通过对含有不同金属离子的MISCWS树脂进行顺序的激光3D打印,制备出了具有两种金属元素嵌套的二维“太极”结构、三维“凯特环”结构以及具有四种金属元素嵌套的“环”结构(图2),从而实现了高精度多材料的异质打印,为后续制造三维集成微系统铺平了道路。 研究团队还进一步制造出了3D多孔的氧化锌气体传感器,在200 ppm NO2环境中灵敏度高达111.3万,比传统的二维传感器灵敏度至少高出10倍。此外,该传感器还展现出了良好的气体选择性(对NO2的灵敏度至少比其他气体高4 个数量级)和线性度(相关系数为0.957),如图3所示。 图1. MISCWS树脂的配备原理及利用该树脂打印出的金属氧化物3D微纳结构 图2. 多种材料的纳米级异质3D打印 图3. 3D氧化锌微传感器的气体探测性能
  • 《美国国家标准与技术研究院(NIST)研究人员在3D打印铝合金中发现了称为准晶体的罕见原子结构,可增强3D打印金属的强度》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-04-15
    • Andrew Iams在电子显微镜下观察时看到了一些奇怪的东西。当时,他正在原子层面上检查一块新型铝合金的碎片,试图找到其强度的关键,这时他注意到原子排列成一种极为特殊的模式。“就在那时,我开始感到兴奋,”Iams表示,他是一名材料研究工程师,“因为我觉得自己可能正在观察一种准晶体。” 他不仅在该铝合金中发现了准晶体,而且他和他在美国国家标准与技术研究院(NIST)的同事们还发现,这些准晶体也使其更加坚固。他们将这一发现发表在了《Journal of Alloys and Compounds》上(DOI:10.1016/j.jallcom.2025.180281)。 这种合金是在金属3D打印的极端条件下形成的,这是一种制造金属零件的新方法。在原子层面上理解这种铝的特性,将使制造全新类别的3D打印零件成为可能,例如飞机部件、热交换器和汽车底盘。这也将为研究使用准晶体来增强强度的新型铝合金开辟道路。 准晶体是什么? 准晶体与普通晶体相似,但有几个关键区别。 传统晶体是由原子或分子以重复模式排列而成的任何固体。例如,食盐是一种常见的晶体。食盐的原子连接形成立方体,这些微小的立方体又连接形成足够大的立方体,可以用肉眼看到。 原子形成重复晶体图案的方式只有230种。准晶体不符合其中的任何一种。它们独特的形状使它们能够形成填充空间的图案,但永远不会重复。 准晶体是由以色列理工学院的材料科学家Dan Shechtman在20世纪80年代于NIST休假期间发现的。当时许多科学家认为他的研究存在缺陷,因为他发现的新晶体形状不符合晶体的正常规则。但通过仔细研究,谢赫特曼毫无疑问地证明了这种新型晶体的存在,彻底改变了晶体学的科学,并赢得了2011年的诺贝尔化学奖。 几十年后,在与Shechtman同一栋楼工作的Andrew Iams在3D打印铝中发现了他自己的准晶体。 金属3D打印如何工作? 金属3D打印有几种不同的方法,但最常见的一种称为“粉末床熔化”。其工作原理如下:金属粉末被均匀地铺成一层薄层。然后,一台强大的激光在粉末上移动,将其熔化在一起。在第一层完成后,新的粉末层被铺在上面,重复这一过程。激光逐层将粉末熔化成所需的形状。 3D打印能够制造出其他方法无法实现的形状。例如,2015年,GE公司为飞机发动机设计了燃料喷嘴,这种喷嘴只能通过金属3D打印制造。这种新型喷嘴是一个巨大的改进。其复杂的形状从打印机中出来时是一个轻质的整体部件。相比之下,之前的版本需要由20个独立部件组装而成,重量增加了25%。到目前为止,GE已经打印了数万个这样的燃料喷嘴,这表明金属3D打印可以在商业上取得成功。 金属3D打印的一个局限性在于它只能适用于少数几种金属。“高强度铝合金几乎不可能打印,”NIST的物理学家、论文的合著者Fan Zhang表示。“它们容易产生裂缝,这使得它们无法使用。” 为什么打印铝很难? 普通铝在大约700摄氏度的温度下熔化。3D打印机中的激光必须将温度提高到远高于这一温度:超过金属的沸点,即2470摄氏度。这会改变金属的许多特性,尤其是因为铝比其他金属加热和冷却得更快。 2017年,加州的HRL实验室和加州大学圣塔芭芭拉分校的一个研究小组发现了一种可以3D打印的高强度铝合金。他们发现,在铝粉中添加锆可以防止3D打印部件出现裂缝,从而制造出一种坚固的合金。 NIST的研究人员着手在原子层面上了解这种新的、可商业获得的3D打印铝-锆合金。“为了足够信任这种新金属,以便将其用于关键部件,如军用飞机零件,我们需要深入理解原子是如何组合在一起的,”Zhang表示。 NIST团队想知道是什么让这种金属如此坚固。事实证明,部分答案是准晶体。 准晶体如何使铝更强? 在金属中,完美的晶体结构较为脆弱。完美晶体的规律模式使原子更容易相互滑动。当这种情况发生时,金属会弯曲、拉伸或断裂。准晶体打破了铝晶体的规律模式,产生缺陷,从而使金属更加坚固。 识别准晶体的测量科学 当Iams从正确的角度观察这些晶体时,他发现它们具有五重旋转对称性。这意味着有五种方式可以绕一个轴旋转晶体,使其看起来相同。 “五重对称性非常罕见。这是可能发现准晶体的一个明显迹象,”Iams表示。“但在我们完全确信之前,必须确保测量是正确的。”为了确认他们发现的是一种准晶体,Iams必须在显微镜下小心地旋转晶体,并证明它还具有三重对称性和从两个不同角度观察到的二重对称性。 “现在我们有了这一发现,我认为它将为合金设计开辟一种新方法,”Zhang表示。“我们已经证明准晶体可以使铝更强。现在人们可能会尝试在未来合金中故意制造准晶体。”