《基因“剪刀”可加速特定基因遗传》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-07-16
  • 近日,研究人员首次使用被称为基因“剪刀”的基因组技术CRISPR加快哺乳动物特定基因的遗传。这种极具争议的基因驱动策略几年前在实验室饲养的昆虫中得到证明。因为它能在整个物种中迅速传播一种基因,从而激发了人们利用致命基因消灭疟蚊等害虫的梦想。现在,被消灭的对象或许还有具有破坏作物或能致病的哺乳动物,如兔子和老鼠。

    不过,这项新研究的目的是创造新实验鼠品种,而不是消灭野生种群,它表明基因驱动对啮齿类动物的作用不如对昆虫有效。尽管如此,澳大利亚阿德莱德大学分子遗传学家Paul Thomas称,这是“在哺乳动物基因驱动技术方面迈出的重要的第一步”。

    近日,美国加州大学圣迭戈分校遗传学家Kimberly Cooper团队在预印本服务器bioRxiv上发表了这项研究。该团队包括Ethan Bier和Valentino Gantz,他们在3年前证明CRISPR技术可以对果蝇进行一种高效的基因驱动。该团队表示已将这项研究成果提交给同行评议杂志。

    “这是一项非常好的研究,而且意义重大。”澳大利亚堪培拉约翰·科廷医学院老鼠遗传学家Gaetan Burgio说,“关于啮齿类动物的基因驱动,我们还一无所知。我们都认为它与苍蝇的效率是一样的,但结果却大不相同。”

    加州大学圣迭戈分校的研究人员设计了携带DNA切割酶Cas9的雌鼠以及携带向导RNA(gRNA)的雄鼠——gRNA能将Cas9运送到基因组的一个特定目标上,再加上一个可以修饰皮毛颜色的基因。Cas9和gRNA是CRISPR的两种成分。

    Cas9切割后,一个细胞会修复损伤,它是基因驱动成功的关键。这个细胞既可以重新连接被切断的DNA链,也可以通过插入新的DNA片段弥补缺口,这一过程被称为同源定向修复(HDR)。

    研究人员利用一种基本生物现象迫使细胞向HDR靠近。在减数分裂期间,他们对Cas9进行了控制。这一细胞分裂过程有助于产生精子或卵子。在减数分裂期间,染色体会自然地交换DNA,而在这些交换过程中,细胞只允许进行HDR。

    结果显示,该策略在雄鼠中无效,可能是因为精原细胞在减数分裂前经过了正常的有丝分裂。但在雌鼠中,基因驱动成功了。它将许多卵细胞的毛色修饰基因复制到了伴侣染色体上,这将显着提高后代继承该基因的几率。

    在一只雌鼠身上,79%的卵细胞最终都在两条染色体上携带毛色修饰基因。如果它与没有该基因的雄性交配,大约90%的幼仔会遗传该基因。Cooper等人写道,这种策略可以加速培养具有引入或受损基因的老鼠。

    世界上最大的转基因鼠生产商杰克逊实验室技术评估和发展部的负责人Michael Wiles表示,该方法可能“非常有用”,人类的许多疾病都是由几个基因畸变引起的,而且制作小鼠模型模仿这些疾病缓慢而艰难。Wiles说,有了这样的基因驱动技术,5年的工作可以在1年内完成。

    尽管这项新研究的目的仅仅是设计实验鼠,但麻省理工学院进化生物学家Kevin Esvelt说,这让他感到担忧。他认为该技术形成的小鼠可能被释放到野生环境中从而产生不良影响。“令人不安的是,这项研究并没有明确提到保障措施。”Esvelt说。

    然而,基因驱动可能会在几代后停止在鼠群中扩散。因为Cas9和gRNA的基因在不同的染色体上,它们会逐渐分离从而失效。在预印文本中,研究人员强调了为野生哺乳动物创造高效基因驱动的持续挑战。他们得出结论说:“关于基因驱动很快会被用于减少野外入侵性啮齿类动物数量的乐观或忧虑,都可能为时过早。”

  • 原文来源:http://news.bioon.com/article/6724829.html
相关报告
  • 《基因剪刀市场化之路还很长》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-01-05
    • 美国某著名咨询公司预测的基因剪刀市场份额尽管可观,但由于涉及安全、准确和效果,可变性和不确定性很大。 2017 年十大科学突破中,“精准定位的基因编辑”榜上有名。对此,美国某著名咨询公司近日发布报告称,全球基因组编辑(包括 CRISPR、TALEN 和 ZFN)的市场规模将从 2017 年的 31.9 亿美元增长到 2022 年的 62.8 亿美元,复合年均增长率为 14.5%。 基因(组)编辑技术就是俗称的基因剪刀,美国咨询公司对基因剪刀市场蛋糕的预测是否准确,有待未来的市场来检验。但是,从理论上分析和预测,需要首先看到这三种基因剪刀的市场准入门槛,其中包括公众的接受程度,以及专业和行政机构是否批准。 基因剪刀主要的市场应用包括细胞系改造、遗传工程、诊断和治疗疾病等。目前细胞系改造占最大份额,基因编辑干细胞疗法的研究认知度高。 就公众和市场的接纳度而言,基因剪刀门槛最低也最容易进入的领域是农作物改良,并且也容易获得批准。即便基因剪刀不准确,可能造成不良后果,但由于是对作物的改进,而非针对人,因此不会造成对人的直接伤害和太多的灾难。 尽管针对疾病防治的基因剪刀市场份额非常之大,但是市场进入的门槛特别高。原因主要是,基因剪刀要确保技术的安全性,并且需要卫生管理部门的伦理审查和批准。作为基因剪刀之一的 CRISPR 尽管效率高,但精准度受到怀疑,因此对基因剪刀的应用也遭到一些生物医学专家的质疑和反对。 2017 年 9 月,俄勒冈州健康和科学大学的米塔利波夫团队发表了一项利用 CRISPR-Cas9 基因剪刀剪除胚胎中引发肥厚型心肌病(HCM)的 MYBPC3 的基因突变的研究结果,称试验组中的 58 个受试胚胎中,有 42 个胚胎没有携带肥厚型心肌病致病基因突变,占比 74.2%。如果不进行基因编辑处理,在 50% 精子正常的情况下,受精卵正常的概率是 50%。也即,通过基因编辑把产生完全正常的胚胎的比例从 50% 提高到了 74.2%,因而可能从胚胎起就消除肥厚型心肌病的病因。 但是,美国哈佛大学的邱奇等人表示,米塔利波夫团队只表明突变不存在了,这可能是因为删除 DNA 而不是修复 DNA 造成的。甚至是,最开始胚胎可能就没有缺陷 MYBPC3 基因的存在。 这说明,基因剪刀的有效性和安全性还在进一步的探索之中,在进入市场之前,将受到严格的审批。 此外,基因剪刀的市场也取决于各种基因剪刀的竞争,实质就是效果和安全的竞争。ZFN、TALEN 是同一类基因剪刀,它们通过外源蛋白质,进入细胞后找到 DNA 序列,进行定位的剪辑,ZFN 技术中的蛋白叫锌指核酸酶,由于三维结构像人的手指,中间有锌离子而得名;TALEN 技术中的蛋白叫转录激活样效应因子核酸酶。但 CRISPR 基因剪刀是由“向导 RNA”来识别特异性 DNA 序列(定位),切割 DNA 的工作也由蛋白质完成。 这三种基因剪刀各有千秋,但在准确性、安全性和效益上的竞争是决定它们占有市场份额多少的另一个重要因素。因此,预测的基因剪刀市场份额尽管可观,但由于涉及安全、准确和效果,可变性和不确定性很大。
  • 《新“基因剪刀”可切除免疫缺陷病毒基因》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2020-12-03
    • 据在线发表于《自然·通信》上的一项最新研究,美国科学家已成功从非人类灵长类动物的基因组中编辑了SIV(猴免疫缺陷病毒,与人类免疫缺陷病毒HIV密切相关,即艾滋病的病因)。这一突破是在艾滋病病毒研究方面迈出的重要一步,将使研究人员比以往任何时候都更接近于开发出治疗人类HIV感染的方法。   主持研究的天普大学医学院研究人员表示:“我们首次证明,单次接种由腺相关病毒携带的CRISPR基因编辑构建体,可从恒河猴的感染细胞中编辑出SIV基因组。”   这项新工作表明,研究团队开发的基因编辑构建体可以到达被感染的细胞和组织,这些组织被称为SIV和HIV的病毒储藏库,是病毒整合到宿主DNA中并隐藏多年的细胞和组织,是治愈感染的主要障碍。这些病毒库中的SIV或HIV超出了抗逆转录病毒疗法的范围,而抗逆转录病毒疗法可抑制病毒复制并从血液中清除病毒。一旦停止抗逆转录病毒治疗,病毒就会从其储藏库中出现并重新进行复制。   在非人类灵长类动物中,SIV的行为非常类似于HIV。在实验室研究的SIV感染的恒河猴模型是一种理想的大型动物模型,可以概括人类的HIV感染。   在这项新研究中,研究人员设计了SIV特异的CRISPR-Cas9基因编辑构建体。细胞培养实验证实,该编辑工具可从宿主细胞DNA的正确位置切割整合的SIV DNA。他们随后将构建体载入腺相关病毒9(AAV9)载体中,该载体可通过静脉注射到感染SIV的动物体内。   研究人员随机选择3只SIV感染的猕猴,每只接受一次AAV9-CRISPR-Cas9注射,另选一只猕猴作为对照。3个星期后,研究人员从猕猴身上采集了血液和组织。分析表明,在用AAV9-CRISPR-Cas9处理的猕猴中,基因编辑构建体已分布到广泛的组织中,包括骨髓、淋巴结和脾脏,并到达一个非常重要的病毒库CD4+T细胞。   此外,天普大学研究人员对被治疗动物组织进行了遗传分析,证明SIV基因组可有效地从感染细胞上裂解下来。裂解效率因组织而异,但在淋巴结中明显达到很高的水平。   研究人员表示,这是终结艾滋病病毒进程中的一项重要进展,下一步是在更长时间内评估这种治疗方法,以确定是否能完全消除病毒,甚至使受试者摆脱抗逆转录病毒治疗。