《基因剪刀市场化之路还很长》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2018-01-05
  • 美国某著名咨询公司预测的基因剪刀市场份额尽管可观,但由于涉及安全、准确和效果,可变性和不确定性很大。

    2017 年十大科学突破中,“精准定位的基因编辑”榜上有名。对此,美国某著名咨询公司近日发布报告称,全球基因组编辑(包括 CRISPR、TALEN 和 ZFN)的市场规模将从 2017 年的 31.9 亿美元增长到 2022 年的 62.8 亿美元,复合年均增长率为 14.5%。

    基因(组)编辑技术就是俗称的基因剪刀,美国咨询公司对基因剪刀市场蛋糕的预测是否准确,有待未来的市场来检验。但是,从理论上分析和预测,需要首先看到这三种基因剪刀的市场准入门槛,其中包括公众的接受程度,以及专业和行政机构是否批准。

    基因剪刀主要的市场应用包括细胞系改造、遗传工程、诊断和治疗疾病等。目前细胞系改造占最大份额,基因编辑干细胞疗法的研究认知度高。

    就公众和市场的接纳度而言,基因剪刀门槛最低也最容易进入的领域是农作物改良,并且也容易获得批准。即便基因剪刀不准确,可能造成不良后果,但由于是对作物的改进,而非针对人,因此不会造成对人的直接伤害和太多的灾难。

    尽管针对疾病防治的基因剪刀市场份额非常之大,但是市场进入的门槛特别高。原因主要是,基因剪刀要确保技术的安全性,并且需要卫生管理部门的伦理审查和批准。作为基因剪刀之一的 CRISPR 尽管效率高,但精准度受到怀疑,因此对基因剪刀的应用也遭到一些生物医学专家的质疑和反对。

    2017 年 9 月,俄勒冈州健康和科学大学的米塔利波夫团队发表了一项利用 CRISPR-Cas9 基因剪刀剪除胚胎中引发肥厚型心肌病(HCM)的 MYBPC3 的基因突变的研究结果,称试验组中的 58 个受试胚胎中,有 42 个胚胎没有携带肥厚型心肌病致病基因突变,占比 74.2%。如果不进行基因编辑处理,在 50% 精子正常的情况下,受精卵正常的概率是 50%。也即,通过基因编辑把产生完全正常的胚胎的比例从 50% 提高到了 74.2%,因而可能从胚胎起就消除肥厚型心肌病的病因。

    但是,美国哈佛大学的邱奇等人表示,米塔利波夫团队只表明突变不存在了,这可能是因为删除 DNA 而不是修复 DNA 造成的。甚至是,最开始胚胎可能就没有缺陷 MYBPC3 基因的存在。

    这说明,基因剪刀的有效性和安全性还在进一步的探索之中,在进入市场之前,将受到严格的审批。

    此外,基因剪刀的市场也取决于各种基因剪刀的竞争,实质就是效果和安全的竞争。ZFN、TALEN 是同一类基因剪刀,它们通过外源蛋白质,进入细胞后找到 DNA 序列,进行定位的剪辑,ZFN 技术中的蛋白叫锌指核酸酶,由于三维结构像人的手指,中间有锌离子而得名;TALEN 技术中的蛋白叫转录激活样效应因子核酸酶。但 CRISPR 基因剪刀是由“向导 RNA”来识别特异性 DNA 序列(定位),切割 DNA 的工作也由蛋白质完成。

    这三种基因剪刀各有千秋,但在准确性、安全性和效益上的竞争是决定它们占有市场份额多少的另一个重要因素。因此,预测的基因剪刀市场份额尽管可观,但由于涉及安全、准确和效果,可变性和不确定性很大。

  • 原文来源:http://www.chinabio.cn/news/news?contentId=2148
相关报告
  • 《科研人员开发出新型“基因剪刀”载体》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2019-04-19
    • 来自南京大学、厦门大学和南京工业大学的科研人员日前在新一期美国《科学进展》杂志上发表论文说,他们开发出一种“基因剪刀”工具的新型载体,可实现基因编辑可控,在癌症等重大疾病治疗方面具有广阔的应用前景。 被誉为“基因剪刀”的CRISPR基因编辑技术能精确定位并切断DNA(脱氧核糖核酸)上的基因位点,可以关闭某个基因或引入新的基因片段,从而达到治病目的。但脱靶效应一直是阻碍其应用的关键障碍之一。 论文通讯作者、南京大学现代工程与应用科学学院教授宋玉君对新华社记者说,目前的CRISPR-Cas9技术本身具有脱靶效应,给精准治疗带来挑战,且这种技术主要以病毒为载体,还可能导致细胞癌化。 据介绍,研究人员新开发的方法采用了一种名叫“上转换纳米粒子”的非病毒载体。这些被“锁”在“基因剪刀”CRISPR-Cas9体系上的纳米粒子可被细胞大量内吞。由于这些纳米粒子具有光催化性,在无创的近红外光照射下,纳米粒子可发射出紫外光,打开纳米粒子和Cas9蛋白之间的“锁”,使Cas9蛋白进入细胞核,从而实现精准的基因剪切。研究显示,这种方法的有效性已在体外细胞和小鼠活体肿瘤实验中得到验证。 宋玉君说,红外光具有强大的组织穿透性,这为在人体深层组织中安全、精准地应用基因编辑技术提供了可能。
  • 《基因“剪刀”可加速特定基因遗传》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-16
    • 近日,研究人员首次使用被称为基因“剪刀”的基因组技术CRISPR加快哺乳动物特定基因的遗传。这种极具争议的基因驱动策略几年前在实验室饲养的昆虫中得到证明。因为它能在整个物种中迅速传播一种基因,从而激发了人们利用致命基因消灭疟蚊等害虫的梦想。现在,被消灭的对象或许还有具有破坏作物或能致病的哺乳动物,如兔子和老鼠。 不过,这项新研究的目的是创造新实验鼠品种,而不是消灭野生种群,它表明基因驱动对啮齿类动物的作用不如对昆虫有效。尽管如此,澳大利亚阿德莱德大学分子遗传学家Paul Thomas称,这是“在哺乳动物基因驱动技术方面迈出的重要的第一步”。 近日,美国加州大学圣迭戈分校遗传学家Kimberly Cooper团队在预印本服务器bioRxiv上发表了这项研究。该团队包括Ethan Bier和Valentino Gantz,他们在3年前证明CRISPR技术可以对果蝇进行一种高效的基因驱动。该团队表示已将这项研究成果提交给同行评议杂志。 “这是一项非常好的研究,而且意义重大。”澳大利亚堪培拉约翰·科廷医学院老鼠遗传学家Gaetan Burgio说,“关于啮齿类动物的基因驱动,我们还一无所知。我们都认为它与苍蝇的效率是一样的,但结果却大不相同。” 加州大学圣迭戈分校的研究人员设计了携带DNA切割酶Cas9的雌鼠以及携带向导RNA(gRNA)的雄鼠——gRNA能将Cas9运送到基因组的一个特定目标上,再加上一个可以修饰皮毛颜色的基因。Cas9和gRNA是CRISPR的两种成分。 Cas9切割后,一个细胞会修复损伤,它是基因驱动成功的关键。这个细胞既可以重新连接被切断的DNA链,也可以通过插入新的DNA片段弥补缺口,这一过程被称为同源定向修复(HDR)。 研究人员利用一种基本生物现象迫使细胞向HDR靠近。在减数分裂期间,他们对Cas9进行了控制。这一细胞分裂过程有助于产生精子或卵子。在减数分裂期间,染色体会自然地交换DNA,而在这些交换过程中,细胞只允许进行HDR。 结果显示,该策略在雄鼠中无效,可能是因为精原细胞在减数分裂前经过了正常的有丝分裂。但在雌鼠中,基因驱动成功了。它将许多卵细胞的毛色修饰基因复制到了伴侣染色体上,这将显着提高后代继承该基因的几率。 在一只雌鼠身上,79%的卵细胞最终都在两条染色体上携带毛色修饰基因。如果它与没有该基因的雄性交配,大约90%的幼仔会遗传该基因。Cooper等人写道,这种策略可以加速培养具有引入或受损基因的老鼠。 世界上最大的转基因鼠生产商杰克逊实验室技术评估和发展部的负责人Michael Wiles表示,该方法可能“非常有用”,人类的许多疾病都是由几个基因畸变引起的,而且制作小鼠模型模仿这些疾病缓慢而艰难。Wiles说,有了这样的基因驱动技术,5年的工作可以在1年内完成。 尽管这项新研究的目的仅仅是设计实验鼠,但麻省理工学院进化生物学家Kevin Esvelt说,这让他感到担忧。他认为该技术形成的小鼠可能被释放到野生环境中从而产生不良影响。“令人不安的是,这项研究并没有明确提到保障措施。”Esvelt说。 然而,基因驱动可能会在几代后停止在鼠群中扩散。因为Cas9和gRNA的基因在不同的染色体上,它们会逐渐分离从而失效。在预印文本中,研究人员强调了为野生哺乳动物创造高效基因驱动的持续挑战。他们得出结论说:“关于基因驱动很快会被用于减少野外入侵性啮齿类动物数量的乐观或忧虑,都可能为时过早。”