《俄芬科学家联合研发出柔性超级电容器》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 姜山
  • 发布时间:2018-02-01
  • 俄罗斯斯科尔科沃科技学院与芬兰阿尔托大学的科研人员联合研发出柔性超级电容器,其电极采用单层碳纳米管,而绝缘层则采用氮化硼纳米管制备。电容器可承受变形,且具有制造简单、使用寿命长的特点。相关成果发布在《Scientific Reports》科学期刊上。

    俄芬联合科研团队回归到“古典”技术路线,即采用“双电极+绝缘层”的电容器结构方案。柔性超级电容器的电极采用单层碳纳米管,材料所具有的孔隙结构可保证电极发达的比表面积,从而提高其电容量,且材料化学稳定,为良导体。而电极之间的空间填充氮化硼纳米管作为绝缘层,材料具有良好绝缘性,0.5毫米的厚度即可保证相应的绝缘指标要求,且材料强度高、塑性好。

    柔性超级电容测试试验结果表明,2万次充放电后电容器仍能保持96%的初始电容量,其等价内阻低,仅为4.6欧姆,且可承受1千次以上的拉伸试验,相对伸长量可达50%。超级电容器的制备采用干法沉积和气相沉积方法,工艺简单,成本低廉,预计柔性超级电容器将很快进入批量生产。

    普通电容器由两个电极及绝缘层构成,而超级电容器的结构相对复杂一些,其电极之间的空间填充了电解质,名义电极和电解质交界处所形成的离子层发挥着电极的作用。电子技术的迅速发展不断对电容器提出新的性能要求,而电子设备的小型化客观要求作为其重要元件的电容器微型化,这就需要不断完善并开发新型电容器。

    近年来人们热衷于柔性笔记本电脑,这又对电容器提出了能够承受弯曲和拉伸的性能要求。在这种情况下,聚合物及电解质基础上的超级电容器不能满足要求,其一,其物理性能不符合要求,且机械强度低;其二,其规格大,材料厚度一般为0.2毫米,简单采用缩小规格的方法会造成电容器内阻值的急剧增大。在性能指标上,柔性超级电容器具有更广阔的市场空间。

相关报告
  • 《英国萨里大学研发出基于复合材料技术的超级电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-05-21
    • 英国萨里大学的专家认为,清洁能源存储的梦想比以往更近了一步,因为他们推出了突破性的超级电容器技术,该技术能够以高功率存储和输送电力,特别是用于移动应用。 萨里大学高级技术学院(ATI)的研究人员在《能源与环境材料》杂志上发表了一篇论文,揭示了他们的新技术,该技术有可能彻底改变电动汽车的能源使用并减少国家电网中基于可再生能源的损失。该团队还相信,他们的技术可以通过消除能源的间歇性来帮助推动风、浪和太阳能的发展。 ATI的超级电容器技术基于一种称为聚苯胺(PANI)的材料,该材料通过一种称为“伪电容”的机制来存储能量。这种廉价的聚合物材料具有导电性,可以用作超级电容器设备中的电极。电极通过将离子捕获在电极内来存储电荷。它通过与离子“交换”材料的电子交换电子来实现。 团队在他们的论文中详细介绍了他们如何使用碳纳米管、PANI和水热碳开发新的三层复合材料,该复合材料在高能量密度下显示出显着的速率能力,而与功率使用无关。 该项目的首席科学家,萨里大学的博士生Ash Stott表示:“全球能源的未来将取决于消费者和行业如何更有效地利用和产生能源,超级电容器已经被证明是间歇性存储和大功率输送的有效途径之一。我们的工作为高功率设备建立了基线,该设备也以高功率工作,有效地扩大了潜在应用范围。” 萨里大学ATI主任拉维·席尔瓦(Ravi Silva)教授说:“ 这项雄心勃勃且富有影响力的工作有可能改变我们所有人的生活方式-这可能是改变变革以提高效率的必要条件以及从环境中收集能量的快速充电解决方案,我们认为这对所有行业都有影响-从所有可穿戴技术到将引发5G革命的移动物联网应用,我们的超级电容器的潜力是无限的。”(来源:萨里大学官网)
  • 《我国开发出高能量密度的柔性钠离子微型超级电容器》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-11-07
    • 中国科学院大连化学物理研究所二维材料与能源器件研究组(DNL21T3)研究员吴忠帅团队与中国科学院院士包信和团队合作开发出具有高能量密度、高柔性、高耐热性能的柔性平面钠离子微型超级电容器。 微型化电化学储能器件已被广泛认为是柔性化、微型化、智能化集成电子产品的关键电源,如遥感器、微型机器人和自供电微系统等。杂化微型超级电容器,因结合微型电池的高能量密度和微型超级电容器的高功率密度的优点,是一种新型的微型电化学储能器件。相对于金属锂,钠资源丰富、成本低廉、且钠的电化学性能与锂相似,因此,开发出钠离子微型储能器件具有重要的应用前景。 最近,该团队以海胆状的钛酸钠为电池型的负极、多孔活化石墨烯为电容型的正极,结合高压离子液体凝胶电解液,成功构建了柔性化平面钠离子微型超级电容器。通过电池型负极和电容型正极的有效耦合,该钠离子微型超级电容器能够在3.5 V的高压下稳定工作,具有高能量密度37.1 mWh/cm3和超低的自放电速率(44h,从3.5V到2.1V)。该钠离子微型超级电容器具有多方向快速离子扩散通道,极大地降低了电荷转移电阻,并显著提高了功率密度。同时,由于器件的平面几何结构和离子凝胶电解液的不可燃性,该微型器件具有良好的机械柔韧性和80℃的高温稳定性。 上述工作得到国家自然科学基金、国家重点研发计划等的资助。相关研究成果发表在《先进科学》(Advanced Science)上。