《Cancer Immunol Res:新型癌症疫苗策略或能有效阻断肿瘤特异性杀伤性T细胞的死亡》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-05-04
  • 日前,一项刊登在国际杂志Cancer Immunology Research上的研究报告中,来自奥古斯塔大学的研究人员通过研究开发出了一种新型癌症疫苗,有望阻断肿瘤特异性的细胞毒性T细胞的死亡。

    据研究者介绍,这种新型疫苗开发的关键在于增加人类机体中白细胞介素2(IL2)的停留时间,IL2是机体免疫系统中的一种特殊分子,其主要负责调节名为杀伤性T细胞的白细胞的活性。研究者Hussein Sultan表示,当对癌症小鼠模型注射基于肽类的疫苗后,持续性的IL2信号会明显增加小鼠机体中肿瘤特异性抗癌T细胞(CD8+ T细胞)的水平。

    在实验过程中,研究人员发现,名为程序性死亡配体1(PD-L1)的蛋白能促进小鼠机体中T细胞抵御肿瘤免疫逃逸能力的增加,而我们都知道,PD-L1蛋白是由肿瘤细胞所产生的,其能够促进杀伤性的T细胞躲避肿瘤的破坏作用。研究者Sultan认为,相关研究结果能够明显改善基于肽类的新型疫苗对癌症小鼠机体的抗肿瘤效应。

    研究者指出,为了能够使得疫苗变得有效,IL2就需要作为IL2-IL2抗体的复合体形式或聚乙烯乙二醇修饰化IL2(PEF-IL-2)形式被注射,这些形式均能够延长IL2的半衰期,从而就能持续激活产生疫苗的T细胞表面IL2受体的功能,使其在体内能够存活较长时间,并且对肿瘤进行有效攻击。

    Celis表示,目前很多疫苗很难诱导产生抵御肿瘤的抗体,因为大部分的肿瘤抗原都不是异种蛋白,这就好像病毒一样,换句话说,T细胞有能力去识别其它类型的抗原;研究者指出,当正常细胞经历特定突变时就会产生癌细胞,因此其并不总是对机体免疫系统很陌生;研究人员希望对癌症小鼠模型的研究结果或能帮其寻找到新型方法来进行人类癌症患者的相关临床试验。

    最后研究者Sultan说道,从事这个研究项目让我们非常高兴,我们希望后期能同更多科学家们进行更为深入的研究来理解如何利用人类机体的免疫系统来对抗多种类型的癌症。

  • 原文来源:https://www.ncbi.nlm.nih.gov/pubmed/29483127
相关报告
  • 《PNAS:新型双特异性抗体分子或能吸引杀伤性T细胞直接狙杀癌细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-06-06
    • 我们的免疫系统通常能够保护机体免于癌症,但有时候癌细胞却会想方设法来逃避机体的免疫防御机制;近日,一项刊登在国际杂志Proceedings of the National Academy of Sciences上的研究报告中,来自斯克利普斯研究所的科学家们通过研究开发出了一种新型的工程化抗癌抗体,其能够通过吸引杀伤性T细胞直接进入覆盖有特色蛋白的癌细胞上,来增强机体自然抗癌策略的作用效果。 这种称之为T细胞参与的双特异性抗体(T-cell engaging bi-specific antibodies)不仅能攻击恶性细胞,而且并不会损伤健康细胞,这得益于其选择性靶向系统,该系统能锁定多种类型癌细胞表面的特殊蛋白ROR1,此外,这种双特异性抗体还能与T细胞双剑合璧发挥完美的抗癌功效。 研究者Rader说道,一旦T细胞被招募并激活,其就会释放毒性分子渗透到靶向细胞中并杀灭细胞,天然的抗体无法做到这一点,因此我们必须对其进行改造使其具有双特异性。研究者Rader擅长使用双特异性抗体来治疗一些疗法选择有限的乳腺癌,比如HER2-阴性乳腺癌;他认为,如果你在乳腺癌细胞上观察ROR1的表达时,你可以会发现HER2阴性的乳腺癌患者的癌细胞通常会表现出ROR1阳性,这些乳腺癌患者通常就会获益。 ROR1是一种抗癌疗法系统最为优良的靶点,而且其仅在恶性成熟细胞中出现,10年前Rader就在白血病中首次发现了ROR1的活性;在胚胎发育期间ROR1也能够表达,而且在出生后其表达就开始被严格抑制了,随后其似乎会在血液癌症和实体瘤中再次开始表达,如今研究人员在诸如肺癌、乳腺癌、卵巢癌和基于血液的癌症中都发现了ROR1的表达。而这种双特异性抗体的独特之处就在于其能在许多不同类型的癌症适应症中发挥作用。 最后研究者表示,双特异性抗体使一种Y形状的免疫因子,其能够结合特异性的疾病靶点,并且吸引杀伤性T细胞,未来我们还将对这种新型的双特异性抗体分子进行改造,使其能够更加高效地帮助杀灭癌细胞,有效改善癌症患者的健康状况。
  • 《纳米颗粒体内编程的特异性TCR,联合癌症疫苗抗击实体瘤》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-17
    • 近日,ACGT宣布Fred Hutchinson癌症研究中心免疫生物工程师Matthias Stephan博士获得了2018年的癌症细胞和基因治疗研究员奖,以支持其开发的针对实体瘤的癌症疫苗的联合治疗策略。 而早在2017年4月,Stephan博士就已经利用纳米颗粒在CAR-T治疗历史上第一次实现了体内构建CAR-T细胞。 同时获奖的还有匹兹堡大学的Joseph Glorioso博士和宾夕法尼亚大学的Gary Cohen博士,他们正在共同研究一种黑素瘤疫苗。以及来自Dana-Farber癌症研究所的David Reardon博士,他正在研发一种治疗致命脑癌的CAR-T细胞疗法。 今天,小编重点要说的是Stephan博士最新成果,也是建立在体内编程CAR-T细胞的研究基础上: 纳米颗粒体内编程特异性TCR 单次注射提供癌症疫苗和响应它所需的特异性T细胞:免疫刺激和T细胞编程将在注射附近的淋巴结中发生。癌症疫苗(黄色)将携带肿瘤蛋白或抗原(Ag)到抗原呈递细胞(APC),其可以刺激T细胞对肿瘤作出反应。纳米颗粒(NPs,绿色)将编程T细胞以识别来自疫苗的肿瘤抗原并与APC一起工作,为攻击肿瘤做好准备。 他提出的方法是将携带癌症疫苗特异性T细胞受体基因的纳米颗粒与一种疫苗结合起来,其中这种疫苗旨在激发患者对肿瘤的免疫反应,目的是通过保证患者具有癌症特异性的T细胞,从而提高治疗性癌症疫苗的有效性。 改善癌症疫苗的有效性 正如我们所知,治疗性癌症疫苗是一种被设计为促进机体自身攻击已经在体内进展的肿瘤的疫苗,而且已有相关研究表明,这种疗法具有很大的癌症治疗潜力。理论上,人体可以被刺激以招募自己的癌症特异性免疫细胞(T细胞),然后对癌细胞进行追捕。 但在实践中,只有一种治疗性癌症疫苗sipuleucel-T(Provenge,治疗前列腺癌)获得了美国FDA的批准。 Stephan评论道:“主要的障碍是无论癌症疫苗设计得多么好,患者的体内必须已经存在肿瘤特异性T细胞,否则疫苗根本无法发挥作用。 但通常,由于运气不好或与年龄相关的免疫功能下降,这些细胞可能不是个体免疫谱的一部分。或者,确实存在的癌症特异性免疫细胞通常是低亲和力细胞,其不会产生缩小肿瘤所需的强有力反应。” 基于此,Stephan博士提出了一种解决方案:通过疫苗本身递送关键的特异性T细胞。该策略建立在之前的研究基础上,Stephan表示他可以使用纳米粒子在白血病的临床前模型中直接对小鼠体内的T细胞进行遗传编程,使其能够特异性靶向癌细胞。 现在,为了探索更有效的治疗方法,Stephan和博士后研究员Fan Zhang将这些纳米颗粒与单一肌内注射的癌症疫苗联合了起来。 最初,他们选择的肿瘤特异性蛋白是间皮素,这是一种在胰腺和卵巢肿瘤中高度表达但在健康组织中可忽略不计的蛋白质。 利用这种方法,研究人员将提供一种新的T细胞受体(TCR, 即T细胞用于识别靶细胞的分子),Zhang和Stephan将编码抗间皮素的TCR基因封装到纳米颗粒中。其中这种TCR是由Fred Hutch的同事所开发,目前已经进入了胰腺癌患者的临床试验。 Stephan解释到,理论上来说,如果这种方法有效,那么应该会适用于所有人。由于所有的患者都拥有抗癌T细胞,因此不会出现治疗失败的情况。我们完全控制了特异性T细胞,无论患者免疫状态如何,他们都可以接受治疗;不管是免疫功能是否低下、有无接受化疗、年轻还是老年,只要患者的体内还存在一些T细胞。 此外,提出的方法也很灵活。 Zhang和Stephan计划使用不同的策略靶向两种类型的T细胞: 可以直接杀死癌症的T细胞以及可以集结抗癌免疫反应的辅助T细胞。其中,杀伤性T细胞可以被永久编程以携带癌症特异性TCR基因,这将使它们能够在其余生中寻找和破坏肿瘤细胞。相比之下,辅助性T细胞可以通过癌症识别进行临时编程,以帮助快速启动对肿瘤的更广泛的免疫应答。 虽然这项初步研究主要集中在癌症治疗上,但该策略还可能有助于提高针对传染病的疫苗的疗效,提供疫苗的免疫特异性可以帮助建立对某些患者群体的保护,或者对免疫刺激较低的疫苗。 但就目前而言,Stephan和Zhang正致力于癌症研究,他们将在胰腺导管腺癌和卵巢癌的临床前模型中对这一策略进行测试。