《Nature:利用人诱导性多能干细胞重建人体分节时钟》

  • 来源专题:广东省干细胞与组织工程技术路线图信息服务平台
  • 编译者: mall
  • 发布时间:2020-04-10
  • 2020年4月3日讯/生物谷BIOON/---在一项新的研究中,来自日本京都大学等研究机构的研究人员利用人诱导性多能干细胞(ipsC)重建出人体分节时钟(segmentation clock),这是胚胎发育研究的焦点。相关研究结果于2020年4月1日在线发表在Nature期刊上,论文标题为“Recapitulating the human segmentation clock with pluripotent stem cells”。

    图片来自Kyoto University/Cantas Alev/Misaki Ouchida。

    从受精卵的第一次分裂开始,复杂的蛋白和基因网络相互作用,以构建形成器官的细胞模式。就像钟表上的钟摆一样,每一次摆动和每个节拍都需要仔细对齐以维持形成生命的节奏。但是,我们对人类早期发育的许多理解都极为有限,一个关键原因是缺乏能够复制这些复杂生物过程的实验模型。

    论文共同通讯作者、京都大学人类生物学高级研究所的Cantas Alev解释说,“比如,在人类受精大约20天后,一种称为‘体节发生(somitogenesis)’的过程开始了。这是胚胎发育出独特的称为'体节(somite)'的节段并决定了身体的基本节段模式的时候。体节最终有助于椎骨和肋骨的形成。”

    体节的出现是由分节时钟决定的,分节时钟是一种控制和指导它们出现的遗传振荡器。尽管已在小鼠、小鸡和斑马鱼中研究了分节时钟基因及其在发育中的作用,但在人类中几乎没有关于它们的任何知识。

    解决此问题的一种方法是使用干细胞重建分节时钟。在这项新的研究中,这些研究人员着手利用人ipsC细胞形成前体节中胚层细胞(pre-somitic mesoderm, PSM),即体节的前体细胞。

    Alev继续说道,“我们首先模拟早期发育过程中活跃的信号通路。通过利用我们在胚胎学中的知识,我们成功地培育出PSM及其后代的培养物。研究以有节律的模式表达的基因不仅表明它们在五个小时内振荡,而且还揭示了我们寻找的分节时钟的新遗传成分。”

    除了简单的基因振荡外,这些研究人员还重现了分节时钟的第二个特征,即表达波。随后,他们使用基因编辑技术评估了与脊柱变形有关的关键基因的功能。

    不出所料,这些基因发生的突变极大地改变了分节时钟的各个方面,包括同步和振荡。接着,他们进一步培育出源自携带上述遗传缺陷的患者的ipsC细胞,鉴定出所涉及的突变并进行了校正。

    这项研究展示了ipsC细胞如何优雅地用于概括人类胚胎发育和其他复杂生物过程的各个方面。

    Alev说,“和许多发育生物学家一样,我对胚胎和胚胎发育很感兴趣。复杂的器官和组织是从非常简单的初始结构形成的,这个形成过程的优雅和美丽令人震惊。我希望重建和分析胚胎发育的许多其他方面,并扩展我们对人类和非人动物发育仍然有限的了解。”(生物谷 Bioon.com)

    参考资料:

    1.Mitsuhiro Matsuda et al. Recapitulating the human segmentation clock with pluripotent stem cells. Nature, 2020, doi:10.1038/s41586-020-2144-9.

    2.Using iPS cells to decipher the timing at the beginning of life
    https://phys.org/news/2020-04-ips-cells-decipher-life.html

相关报告
  • 《诱导多能干细胞暗示范可尼贫血是一种胎儿疾病》

    • 来源专题:再生医学与健康研发动态监测
    • 编译者:liuq
    • 发布时间:2016-03-24
    • 范可尼贫血(Fanconi anemia ,FA)是一种导致大范围生长缺陷的遗传性疾病 ,包括经常致癌。在分子水平上,FA造成受损DNA修复。在健康个体中, DNA损伤会激活两个FA蛋白质,FANCD2 和FANCI。这些蛋白质结合相关的染色质并促进同源重组和跨损伤合成。尽管它影响广泛,但最严重的是造血异常。尽管病人可以活几十年,常见的症状表现在儿童早期,但人们对疾病在早期阶段的进展知之甚少。因此,Megumu Saito实验室准备利用一个诱导多能干细胞模型来研究该疾病的早期阶段。 实验室从6个 FA患者中获得他们的成纤维细胞,然后将细胞重新编程为多能性状态(“诱导多能性”细胞)。为了确定病理的分子机制, 他们克隆患者具有正常FA基因的iPS细胞,并诱导出健康FANCD2基因的表达。经过修正的克隆细胞的造血细胞数量远高于未修正的细胞,并表达出更多参与造血的基因。据该研究的主要作者之一的助理教授Akira Niwa所说,这一研究表明FA是一种在子宫里发展的疾病。“我们不知道造血衰竭发生的第一时间。但在这里我们知道它发生在出生之前。”
  • 《广州生物院首次实现化学方法高效诱导多能干细胞》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-04-06
    • 中国科学院广州生物医药与健康研究院裴端卿研究员领衔的研究团队经过5年攻关,揭示了化学方法制备干细胞的科学原理,开发了简单、高效、标准化制备干细胞的方法,为诱导多能干细胞的研究和优化制备途径提供了全新的科学视角和解决方案。相关成果于2018年4月6日零时在线发表在国际干细胞权威杂志Cell Stem Cell(细胞·干细胞)上。 诱导多能干细胞可以帮助人类了解细胞“变身”的奥秘,为科学界提供了一个窥探生命本质的窗口。多能干细胞还可以用于再生新的组织和器官,为疾病治疗和再生医学提供“种子”细胞来源。日本科学家、2012年诺贝尔生理或医学奖获得者山中伸弥利用病毒载体进行基因运送,具有潜在的致癌隐患,对于以后的临床应用有较大风险。为了将体细胞诱导为多能干细胞,各国科学家不断地开辟新方法。后期,科学家们利用化学小分子替代山中伸弥因子诱导出了多能干细胞,但存在步骤多、时间长、效率低、机理不清楚等缺点。 裴端卿领衔的科研团队经过5年的努力,开发出一套高效、简单的化学小分子诱导多能干细胞的方法, 简称为CIP(Chemical Induction of Pluripotency),即化合物诱导干细胞多能性。裴端卿指出,该方案只需要给细胞用两种不同的“药水”依次“洗澡”,便可以将体细胞“返老还童”到干细胞的状态。这一方法比之前的方案简单、高效,所需的初始细胞量少。更重要的是,可以实现多种体细胞类型“返老还童”,包括在体外极难培养的肝细胞。 这些神奇的“魔法药水”是如何将成体细胞诱导到胚胎发育早期的多能干细胞状态的呢?裴端卿说,在个体中,所有的细胞都拥有同样的染色质,为什么会形成形态各异、功能不同的各种细胞呢?原来,细胞在发生可识别的形态变化之前,就因受到约束而向特定方向分化,确定了其未来的发育命运。团队研究发现,细胞的命运受到细胞核内部的“信息中枢”染色质的状态控制。细胞染色质的开放(1)与关闭(0)状态总和,构成了决定细胞命运状态,这种情况就犹如计算机二进制的“密码串”,进而将细胞“锁”在了特定状态。 由于没有引入外源基因,该方法操作简便、诱导过程条件均匀、所有成分明确、标准化,将为干细胞应用提供安全、高效的制备方法,具有广阔市场应用前景。与此同时,为开辟药物诱导细胞命运转变提供了新方向,将极大推动干细胞及再生医学的发展,服务于我国的医疗与卫生事业。 中国科学院上海药物研究所研究员、国家新药筛选中心副主任谢欣表示,该研究方法与常规的诱导方法有显著区别,Brdu这一小分子直接整合入DNA,重塑染色质结构,从而改变基因表达,这是一个全新的机制。且本研究极大提高了诱导的效率,使化学诱导有望成为诱导多能干细胞的常规方法。同时,这一机制可以指导科学家有目标地设计化合物小分子来改变染色质结构,从而更加优化化学诱导重编程体系。更为重要的是,中国科学家在化合物诱导多能干细胞的领域上互为补位,使我国在该领域处于世界领先的地位。 论文共同通讯作者为裴端卿研究员、刘晶研究员。广州生物院博士生曹尚涛、李东伟博士、余胜勇硕士为论文的共同第一作者。研究工作得到了国家重点研发项目、中国科学院、国家自然科学基金、广东省和广州市的经费支持。