《Cell|不同脑区和细胞类型突触多样性的蛋白质组景观》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-11-04
  • 本文内容转载自“西湖欧米”微信公众号。原文链接: https://mp.weixin.qq.com/s/4wY3X8etJU0BTwKUPNiXLQ

    2023年11月1日,德国法兰克福马克斯普朗克大脑研究所的 Erin M. Schuman 团队在 Cell 上发表了新的文章 The proteomic landscape of synaptic diversity across brain regions and cell types。该研究主要通过使用荧光标记的突触前端蛋白和质谱分析等技术,系统地分析了不同细胞类型和脑区的突触多样性的蛋白质组,为突触功能、神经网络和疾病研究提供了重要洞见。

    神经元在突触上使用不同的蛋白组合建立突触连接,这些组合定义了突触的特异性、功能和可塑性潜力。然而,突触蛋白质组的多样性仍然鲜为人知。研究使用了Cre-inducible knockin小鼠模型,这些小鼠表达了荧光标记的突触前蛋白synaptophysin-tdTomato(SypTOM),用于标记使用不同神经递质的细胞类型形成的突触。约1800种独特的突触类型富集蛋白,并将数千种蛋白质分配给不同类型的突触。

    研究分析了包括不同细胞类型(兴奋性和抑制性神经元)、不同脑区域(大脑皮层、海马、纹状体等)以及使用不同神经递质(谷氨酸、GABA、多巴胺等)的15种突触类型。研究人员鉴定了这15种不同的主要突触亚型的蛋白质组成,这些突触来自于不同的细胞类型和脑区。通过比较这些突触的蛋白质组成,他们发现突触的蛋白质组成受细胞类型的影响远远大于脑区的影响。研究还发现,兴奋性和抑制性突触之间有一些蛋白质是特异性的,这些蛋白质在不同类型的突触中表达水平存在显著差异,这些特异性的蛋白质可能在调节突触特性和功能上发挥重要作用。

    团队还构建了突触蛋白质-蛋白质相关网络,揭示了与兴奋性或抑制性神经递质相关的特定蛋白模块。最后,研究人员发现了与神经递质或不同突触类型相关的特定蛋白模块。研究也存在一些局限性,例如:使用荧光标记的突触前端蛋白可能限制了可以研究的突触蛋白质组。此外,突触体的纯度可能受到技术方法的限制,可能存在一些偏差。总的来说,这项研究的主要贡献在于使用高度精细的技术手段,系统地揭示了不同细胞类型和脑区突触的蛋白质组成,这些发现对于理解突触的功能、神经网络的形成和神经系统疾病的研究具有重要意义。

  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867423010826
相关报告
  • 《Nature | 跨物种蛋白质组学图谱揭示了人类突触发育的可塑性》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-09-18
    • 2023年9月13日,加州大学旧金山分校LiWang及Arnold R. Kriegstein共同通讯在Nature 在线发表题为“A cross-species proteomic map reveals neoteny of human synapse development”的研究论文,该研究生成了人类、猕猴和小鼠新皮层突触发育的跨物种蛋白质组学图。 通过跟踪1000多个突触后密度(PSD)蛋白从妊娠中期到青年期的变化,该研究发现人类PSD成熟分为三个主要阶段,这些阶段由不同的途径主导。跨物种比较表明,人类PSD的成熟速度比其他物种慢两到三倍,并且在围产期含有更高水平的Rho鸟嘌呤核苷酸交换因子(RhoGEF)。人类神经元中RhoGEF信号的增强延迟了树突棘的形态成熟和突触的功能成熟,可能有助于人类大脑发育的新生特征。此外,PSD蛋白可以分为四个模块,发挥阶段和细胞类型特异性功能,可能解释它们与认知功能和疾病的差异关联。总之,突触发育蛋白质组学图谱为研究突触成熟的分子基础和进化变化提供了蓝图。 本文内容转载自“ iNature”微信公众号。原文链接: https://mp.weixin.qq.com/s/j1cPeGy0ebJWZng-RhSWXg
  • 《研究揭示三维基因组的单分子拓扑结构多样性和细胞异质性》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2023-03-08
    •   高等真核生物基因组存在复杂的三维空间结构,在不同尺度下形成如染色质环(Chromatin loops)、拓扑关联结构域(TADs)、活性/非活性染色质区室(A/B compartments)和染色体域(Chromosome territories)。这些结构对于基因组稳定性的维持、基因表达的精准调控具有重要作用,从而影响细胞命运决定和表型建立。经典的基因组三维结构主要通过染色体构象捕获(3C)及其衍生方法如4Cs、5C、Hi-C、ChIA-PET为代表的多种形式的高通量技术揭示。这些技术可以捕获细胞核内空间相邻的成对DNA序列,但无法捕获细胞群体中基因组内协同的多位点相互作用(multi-way contact)和单分子拓扑结构(single-allele topology)。此外,基因组3D结构在细胞周期、发育和分化过程中动态变化,且与多个基因及调控区间的染色质相互作用相关。获得细胞群体中的染色体单分子拓扑结构对于探究基因组的动态折叠机制和与基因调控功能的关联性颇为重要。     近年来,多个实验室建立了如ChIA-drop、split-pool recognition of interactions by tag extension(SPRITE)、Tri-C、multi-contact 4C和Pore-C等方法,用于探讨染色质多位点协同相互作用和群体细胞的染色体单分子拓扑结构的捕获。这些方法中,Pore-C具有技术简单,且可以同步捕获全基因组高阶多位点互作信息和DNA甲基化修饰的优点。   3月6日,中国科学院昆明动物研究所研究员侯春晖团队与中山大学中山眼科中心副研究员肖传乐团队合作,在《自然-通讯》(Nature Communications)上,发表了题为High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding的研究论文。该工作优化建立了高通量的Pore-C方法,显著增加了高阶染色质互作的检测通量,并揭示了三维基因组的单分子拓扑结构多样性和细胞特异性。   研究发现,Pore-C技术测序通量相对较低的原因可能是与DNA交联的蛋白质没有被完全去除而导致测序纳米孔芯堵塞。为了解决这一问题,研究优化了酶解条件,测试了多次蛋白酶解和使用混合蛋白酶的策略,提高了测序产量约80%,近乎成倍降低了该技术的使用成本。此外,研究通过整合NGMLR和Minimap2比对算法开发了MapPore-C比对流程,显著改善了比对准确性和数据利用率低的问题,同时,研究通过与Hi-C数据比较,验证了HiPore-C能够高度重现基于Hi-C捕获的染色质环、拓扑相关结构域和染色质区室等基因组3D结构。进一步,研究探索了染色体间高阶互作发现,多数互作并非发生在端粒和中心粒之间,而是发生在基因组区域,且形成两个转录活性不同的互作枢纽,其中一个枢纽基因密度、增强子密度和活跃状态染色质相关的表观遗传修饰水平均更高。研究还发现,多个染色体的tRNA基因富集区域之间发生跨染色体的高频相互作用,HiPore-C高阶互作不仅发生在TAD和compartment内部,而且能够跨越多个区室、拓扑相关域和染色质环,基于直接和间接的DNA片段间相互作用构建的染色质互作图谱与常规Hi-C图谱总体相似,但间接DNA片段互作更加倾向跨越多个结构单元。上述研究揭示了跨染色质结构域互作存在的广泛性,并突出了HiPore-C技术在单分子水平解析基因组三维高阶互作的优势和重要性。   研究通过分层聚类的方法,讨论了不同类型细胞的拓扑结构中呈现的单分子拓扑结构集群。这些结构集群是类亚TAD(subTAD-like)结构域形成的基础,具有明显的细胞特异性,表明单分子拓扑结构多样性是细胞群体TAD结构域划分的基础,对探讨基因组空间结构组织和细胞特异的基因表达间的关系具有重要意义。此外,研究使用HiPore-C数据比较了红系K562和淋巴系GM12878细胞中在β-globin locus的高阶互作。结果发现,人ε-和γ-珠蛋白基因启动子和多个增强子之间形成了多位点同时互作、细胞特异的增强子-启动子中心,这种相互作用可能是动态的。研究分析了HiPore-C同时捕获染色质高阶互作和DNA甲基化状态的能力,发现了DNA甲基化信号与染色质环锚点间相互作用强度呈正相关,此外,可根据DNA甲基化水平准确地区分染色质区室的类型(A vs B)。   该研究建立了HiPore-C技术,可全面描述单分子拓扑结构的多样性,揭示的单分子拓扑结构的动态折叠比以前想象的更为复杂,进一步提升了关于三维基因组折叠规律的认知。