《研究揭示三维基因组的单分子拓扑结构多样性和细胞异质性》

  • 来源专题:转基因生物新品种培育
  • 编译者: 姜丽华
  • 发布时间:2023-03-08
  •   高等真核生物基因组存在复杂的三维空间结构,在不同尺度下形成如染色质环(Chromatin

    loops)、拓扑关联结构域(TADs)、活性/非活性染色质区室(A/B compartments)和染色体域(Chromosome

    territories)。这些结构对于基因组稳定性的维持、基因表达的精准调控具有重要作用,从而影响细胞命运决定和表型建立。经典的基因组三维结构主要通过染色体构象捕获(3C)及其衍生方法如4Cs、5C、Hi-C、ChIA-PET为代表的多种形式的高通量技术揭示。这些技术可以捕获细胞核内空间相邻的成对DNA序列,但无法捕获细胞群体中基因组内协同的多位点相互作用(multi-way

    contact)和单分子拓扑结构(single-allele

    topology)。此外,基因组3D结构在细胞周期、发育和分化过程中动态变化,且与多个基因及调控区间的染色质相互作用相关。获得细胞群体中的染色体单分子拓扑结构对于探究基因组的动态折叠机制和与基因调控功能的关联性颇为重要。  

      近年来,多个实验室建立了如ChIA-drop、split-pool recognition of interactions by tag extension(SPRITE)、Tri-C、multi-contact 4C和Pore-C等方法,用于探讨染色质多位点协同相互作用和群体细胞的染色体单分子拓扑结构的捕获。这些方法中,Pore-C具有技术简单,且可以同步捕获全基因组高阶多位点互作信息和DNA甲基化修饰的优点。

      3月6日,中国科学院昆明动物研究所研究员侯春晖团队与中山大学中山眼科中心副研究员肖传乐团队合作,在《自然-通讯》(Nature Communications)上,发表了题为High-throughput Pore-C reveals the single-allele topology and cell type-specificity of 3D genome folding的研究论文。该工作优化建立了高通量的Pore-C方法,显著增加了高阶染色质互作的检测通量,并揭示了三维基因组的单分子拓扑结构多样性和细胞特异性。

      研究发现,Pore-C技术测序通量相对较低的原因可能是与DNA交联的蛋白质没有被完全去除而导致测序纳米孔芯堵塞。为了解决这一问题,研究优化了酶解条件,测试了多次蛋白酶解和使用混合蛋白酶的策略,提高了测序产量约80%,近乎成倍降低了该技术的使用成本。此外,研究通过整合NGMLR和Minimap2比对算法开发了MapPore-C比对流程,显著改善了比对准确性和数据利用率低的问题,同时,研究通过与Hi-C数据比较,验证了HiPore-C能够高度重现基于Hi-C捕获的染色质环、拓扑相关结构域和染色质区室等基因组3D结构。进一步,研究探索了染色体间高阶互作发现,多数互作并非发生在端粒和中心粒之间,而是发生在基因组区域,且形成两个转录活性不同的互作枢纽,其中一个枢纽基因密度、增强子密度和活跃状态染色质相关的表观遗传修饰水平均更高。研究还发现,多个染色体的tRNA基因富集区域之间发生跨染色体的高频相互作用,HiPore-C高阶互作不仅发生在TAD和compartment内部,而且能够跨越多个区室、拓扑相关域和染色质环,基于直接和间接的DNA片段间相互作用构建的染色质互作图谱与常规Hi-C图谱总体相似,但间接DNA片段互作更加倾向跨越多个结构单元。上述研究揭示了跨染色质结构域互作存在的广泛性,并突出了HiPore-C技术在单分子水平解析基因组三维高阶互作的优势和重要性。

      研究通过分层聚类的方法,讨论了不同类型细胞的拓扑结构中呈现的单分子拓扑结构集群。这些结构集群是类亚TAD(subTAD-like)结构域形成的基础,具有明显的细胞特异性,表明单分子拓扑结构多样性是细胞群体TAD结构域划分的基础,对探讨基因组空间结构组织和细胞特异的基因表达间的关系具有重要意义。此外,研究使用HiPore-C数据比较了红系K562和淋巴系GM12878细胞中在β-globin

    locus的高阶互作。结果发现,人ε-和γ-珠蛋白基因启动子和多个增强子之间形成了多位点同时互作、细胞特异的增强子-启动子中心,这种相互作用可能是动态的。研究分析了HiPore-C同时捕获染色质高阶互作和DNA甲基化状态的能力,发现了DNA甲基化信号与染色质环锚点间相互作用强度呈正相关,此外,可根据DNA甲基化水平准确地区分染色质区室的类型(A

    vs B)。

      该研究建立了HiPore-C技术,可全面描述单分子拓扑结构的多样性,揭示的单分子拓扑结构的动态折叠比以前想象的更为复杂,进一步提升了关于三维基因组折叠规律的认知。

  • 原文来源:https://www.cas.cn/syky/202303/t20230307_4878496.shtml
相关报告
  • 《Cell丨从三维全肿瘤视角描绘胶质母细胞瘤的演化和异质性》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-01-19
    • 2024年1月18日,美国西北大学Feinberg医学院岳峰教授团队和加利福尼亚大学旧金山分校Joseph Costello教授团队合作在Cell在线发表了题为 Glioblastoma evolution and heterogeneity from a 3D whole-tumor perspective 的研究论文。 胶质母细胞瘤(Glioblastoma, GBM)是一种恶性的、成年人中最常见和最致命的脑肿瘤。该肿瘤内部的异质性和肿瘤演变是导致治疗失败的核心原因。肿瘤内部的异质性可以以多种形式出现,例如基因突变,结构变异,转录调控差异等。目前大部分研究都只依赖于对每位患者的单一组织活检进行评估,但是突变频率、转录状态等的测定取决于所采样区域,可能不适用于整个肿瘤,这就局限了目前这些研究结果的应用。 该研究采用了基因组学和表观基因组学测序方法对GBM组织和单个细胞进行了详细的研究, 首次为GBM提供了全肿瘤视角,并且在三维空间中重新定义了GBM的肿瘤异质性,揭示了其最早的起源和演化。该研究还提供了在线交互平台,用户可以选择任何基因、转录组或其他感兴趣的特征,在360度跨个体肿瘤中可视化其空间模式,并生成显示其在肿瘤质心、边缘和对比增强病变方面的摘要图和统计数据。该研究为未来的GBM研究、临床治疗和预后研究提供了宝贵的资源,有望推动我们对GBM的深入了解,并为优化GBM患者预后和改善治疗效果打下了基础。
  • 《Science | 人类大脑中的单细胞DNA甲基化和三维基因组结构》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-10-14
    • 2023年10月13日,索尔克生物学研究所的研究人员在Science 上发表了题为Single-cell DNA methylation and 3D genome architecture in the human brain的文章。 描述复杂细胞类型背后的基因调控程序是理解健康和疾病中大脑功能的基础。该研究通过探测来自3个成年男性大脑46个区域的51.7万个细胞(39.9万个神经元和11.8万个非神经元)的DNA甲基化和染色质构象,在单细胞分辨率下全面研究了人类脑细胞的表观基因组。 该研究鉴定了188种细胞类型,并对其分子特征进行了表征。综合分析揭示了DNA甲基化、染色质可及性、染色质组织和基因表达在细胞类型、皮质区和基底神经节结构中的一致变化。研究人员进一步开发了单细胞甲基化条形码,利用选择基因组位点的甲基化状态可靠地预测脑细胞类型。这种多模态表观基因组脑细胞图谱为成人大脑中细胞类型特异性基因调控的复杂性提供了新的见解。 本文内容转载自“ CNS推送BioMed”微信公众号。 原文链接: https://mp.weixin.qq.com/s/IwI13twn10xlGUJsNbQekg