《山体滑坡对冰川融化和运动有重大影响》

  • 来源专题:中国科学院文献情报系统—海洋科技情报网
  • 编译者: liguiju
  • 发布时间:2022-05-13
  • 美国明尼苏达大学研究团队利用卫星图像研究了2019年发生在智利巴塔哥尼亚地区阿马利亚冰川上山体滑坡的影响,发现山体滑坡导致冰川规模扩大,并从此减缓了冰川的融化过程,相关研究成果表在《地质学》(Geology)上。这些信息可以帮助科学家更准确地预测未来冰川的大小,并更好地了解生活既有冰川又有山体滑坡地区的风险。

    几十年来,冰川学家一直在监测世界各地由于全球变暖而导致的冰川衰退。在过去100年里,面积为150平方公里的Amalia冰川一直在逐渐消退,超过了10公里。到目前为止,山体滑坡对冰川的影响在很大程度上是未知的。

    研究小组发现,在2019年的山体滑坡之后,Amalia冰川立即开始“前进”或快速增长。虽然它的流量后来放缓到滑坡前速度的一半,但在过去三年中,冰川已经增长了约1000米。

    研究人员发现,山体滑坡将冰川推向下游,导致冰川立即前进并增大。然后,滑坡产生的沉积物和岩石在冰川与海洋交界的地方堆积起来,防止冰山断裂入大海,有效地稳定了冰川。

    研究人员使用卫星图像可以实时监测冰川的运动。在未来,这种方法可以更频繁地用于监测偏远地区的冰川。研究小组和其他科学家目前正在研究过去20-30年的卫星数据,看看他们是否可以发现以前未记录的冰川上发生的滑坡。他们的目标是增加数据库,以便更好地了解这一现象。(李亚清 编译)

  • 原文来源:https://cse.umn.edu/college/news/study-finds-landslides-can-have-major-impact-glacier-melt-and-movement
相关报告
  • 《南极“末日冰川”融化速度惊人令人困惑 元凶是谁?》

    • 来源专题:大气污染防治
    • 编译者:APC
    • 发布时间:2020-10-13
    • 据英国广播公司(BBC)中文网报道,有“末日冰川”之称的南极思韦茨冰川(Thwaites Glacier)正在以惊人的速度融化,提高海平面,令人担忧更令人困惑。英美科学家近日宣布他们找到了这个问题的答案。  科学家们表示,冰川融化过快的元凶,是潜入冰川底部和基岩之间的暖流,水温摄氏2度。而且,借助最新勘测仪器,科学家绘制出暖流在冰下逡巡的路径。  最新研究结果发表在《冰冻圈》(The Cryosphere)杂志上。  各种探测数据显示,思韦茨冰川前端底部悬空,海洋暖流由一个巨大的通道插入大陆架和冰川底部之间;暴露在水中的冰面越大,融化就越多,而涌入的暖流水量更大,如此形成恶性循环。  报道称,冰川底部的这个空隙比以前认为的更深,大约600米,相当于六个足球场首尾相连。  这股海底暖流,被形容为有数百万年历史的思韦茨冰川的阿基利斯之踵—致命的弱点。  如果思韦茨冰川以现在的速度持续融化,则冰架最终崩塌不可避免,地球的海洋和大气循环系统将被严重扭曲,后果堪忧。  “末日冰川”的秘密  思韦茨冰川是南极最大、移动速度最快的两个冰川之一(另一个是松岛冰川),位于南极州的西部,冰川厚度达4千米,面积超过18万平方公里,略小于英国,和美国佛罗里达州的大小相当。  思韦茨冰川被认为是预测全球海平面上升的关键。数据显示,它拥有足够的冰来将海平面提高65厘米,它融化后注入阿蒙森海的冰水,约占全球海平面上升总量的4%。  美国国家航空航天局(NASA)去年初宣布,利用最新卫星雷达探测技术发现思韦茨冰川底部一个巨大洞穴,高300米,面积约40平方公里,可容纳140亿吨冰。数据显示这个洞穴有很大一部分是三年内形成的。  英国南极勘察局(BAS)用无人潜水艇对冰川底部的水流进行勘测,結果不但探测到由咸、淡水混合而成的湍流,更测得比冰点高出摄氏2度多的“暖水”水温。  根据各种数据绘制的剖面图展示了暖流从底部侵蚀、融化冰川的路径和后果。  NASA和BAS的研究结果证实了科学界多年来的怀疑,即思韦茨冰川前端并不是紧贴着大陆架的基岩,所以暖流可以像梭子一样嵌入冰层和海床之间;切面越大,冰川融化越快。  为什么叫“末日冰川”?  卫星数据显示,自上个世纪70年代以来,思韦茨冰川明显退缩,1992-2017年,冰川接地线以每年0.6至0.8公里的速度退缩。  上个世纪90年代,思韦茨冰川每年融化100亿吨冰,现在差不多是800亿吨。  它的坍塌将使全球海平面上升约65厘米,同时会释放出南极洲西部的其他主要冰体,这些冰体加起来可能会使海平面上升2-3米。  这对许多国家,包括世界上大多数沿海城市来说,将是灾难性的,还会让一些地势低的海岛消失。  但是,更重大的危险在于海洋风暴的烈度将因此加剧。  英国南极勘察科学部负责人沃恩教授(David Vaughan)说,如果海平面升高50厘米,本来千年一遇的风暴可能更频繁,变成百年一遇;如果升高一米,那就可能每10年发生一次。  思韦茨冰川不会在一夜之间全部融化;那需要数十年,甚至超过一个世纪。  但不可否认的是,二氧化碳排放不断增多,使得更多热量进入大气和海洋,意味着地球生态系统中的能量增多,必然导致全球大循环发生变化。  这种现象已经在北极发生,南极的迹象也日益清晰。  哪儿来的暖流?  南极洲西部是南极大陆上风暴最频繁的地方,而这里的冰川稳定性不如东部,受气候和洋流的影响更大。  关键是水温较高的大西洋暖流,从墨西哥湾来到南极,神不知鬼不觉地冲刷冰川底部和悬浮的前缘,使冰层从底部开始融化。  这股来自墨西哥湾的温暖水流因为含盐而较重,所以沉在下方,随大西洋深海洋流进入南极,汇入环绕南极大陆的洋流。  南极的地表水温略高于盐水冰点(-2℃),但墨西哥湾来的洋流温度高于结冰点,大约是1℃到2℃,位于水下大约530米处。上冷下暖的洋流一路逡巡一路侵蚀冰川边缘,并顺着冰川和海床岩石之间的孔道不断冲刷冰川底部。  由于气候变化,地球变暖,海洋水温在升高。太平洋水温的升高导致南极大陆西海岸的风向改变,推动海洋深处的暖流更汹涌。
  • 《融化和冻结时的破冰》

    • 来源专题:物理海洋学知识资源中心
    • 编译者:张灿影
    • 发布时间:2020-12-08
    • 澳大利亚悉尼大学的数学研究生埃里克·海斯特过去三年一直在研究冰山。海丝特和伍兹霍尔海洋学研究所的研究人员正在研究冰山的形状如何影响它融化的方式。冰在融化时会变形,并且会形成一些非常奇怪的形状,尤其是在冰的底部。大多数气候模型都缺少冰山融化的动力学。如果气候模式中包括这些模块,就可以预测冰山如何将冰原中的淡水输送进海洋,从而促进生物群落的发展。冰川是格陵兰峡湾淡水的主要来源,也是南极洲淡水流失的重要原因,因此,气候模型不应忽视这些过程。研究者认为,即使人们对冰融化的物理过程有很好的理解,有些模型也能精确地模拟它,但在这些模拟中冰的形状是不能被改变的。冰的形状之所以如此重要,主要是由于不同的热力学过程会影响不同的表面,而冰山的形状和大小却存在很大的差异。考虑到浸没在水中的底面与侧面的融化方式不同,且每一面都不会均匀地融化。研究者们把一块染色过的冰块浸入水槽中,控制水流经过,进而观察冰块融化。结果发现,面对流场的一侧比与流场平行的另一侧融化得更快。研究者们认为,冰的融化是一个值得研究的方面,另一个需要探讨的就是冰的形成,主要研究的是湖泊冰的形成与湖底水的流体动力学之间的关系。一个湖泊可能存在多个水层,且存在不同的密度和温度,而密度异常可以在移动的冰锋下诱发复杂的流体动力学,这又在之前的研究中经常被忽视。由于冰的形成和融化在气候中起着至关重要的作用,因此更好地了解这一过程背后的流体动力学,可以帮助研究人员准确地认识和研究全球变暖的过程。 相关论文链接:https://www.sciencedaily.com/releases/2020/11/201122094640.htm (郭亚茹 编译,於维樱 审校)