《研究发现RNA剪接基因编辑的新方法》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-10-12
  • 10月5日,国际学术期刊《分子细胞》在线发表了中国科学院上海生命科学研究院(营养与健康研究院)常兴研究组题为Genetic modulation of RNA splicing with a CRISPR-guided cytidine deaminase 的最新研究成果。证明可以利用TAM (Targeted-AID induced mutagenesis)基因编辑,靶向DNA上的RNA剪接顺式元件,高效调控RNA剪接,用于研究RNA可变剪接的功能,以及用于人类遗传疾病的治疗。 真核细胞中,RNA剪接是基因表达的重要环节。据估计,超过75%的人类基因具有一种以上的mRNA剪接方式(可变剪接),其中大部分可以翻译为功能性蛋白质。但相对于基因功能而言,对于可变剪接的生理功能,认识还非常有限,原因主要在于调控内源RNA剪接的实验手段非常有限。RNA剪接的异常也是许多疾病的直接诱因,估计35~50%的人类疾病由基因剪接异常造成。因此,无论是从学术研究或是临床应用的角度,都亟需开发出调控RNA剪接的基因编辑新方法。  常兴研究组过去开发TAM (Targeted AID-induced mutagenesis),也就是融合核酸酶活性缺陷的Cas9蛋白和胞嘧啶脱氨酶AID,并且发现它具有两个特点。首先,可以在sgRNA靶向的DNA上,将C/G碱基随机向其它碱基突变,可以用于分析肿瘤耐药性突变及诱导蛋白体外进化等;其次,在偶联UNG抑制剂UGI后,可以在将sgRNA靶向区域中一个小窗口内(5-6个碱基)的C高效向T突变 (Nature Methods, 2016)。

    在这一新研究中,博士研究生袁娟娟和马云青首先注意到,98%以上的内含子有保守的GU(内含子开始)和AG(内含子末尾)序列,推测如果可以高效精确地将G突变成A,可以特异性阻断外显子识别,调控内源性mRNA的剪切。通过这一策略,利用TAM诱导剪接位点DNA上G>A突变,就可以诱导可变外显子(alternative exon)及组成性外显子(constitutive exon)的跳读 (Exon skipping);改变可变剪接位点的选择(Alternative splice site);调节互斥外显子的选择(mutually exclusive exons);诱导小的内含子的包含 (intron retention)。此外,如果通过TAM将3’剪接位点上游polypyrimidine track中包含的C向T突变,可以促进下游外显子的包含。因此,利用TAM可以成功地实现针对RNA剪接的“loss of function”和”gain of function”调控。

    最后,研究人员探索了利用TAM修复杜氏肌营养不良症(DMD)的可行性。DMD是一种致命的遗传疾病(发病率男性中1/4000)。其发病原因在于,遗传突变造成Dystrophin蛋白的完全缺失,引发肌肉萎缩和瘫痪,最终造成心脏或肺功能的衰竭。如果通过外显子跳读,能产生内部截短的Dystrophin蛋白,可以达到对DMD的治疗效果。因此研究人员构建了DMD病人来源的诱导型多能干细胞,此病人因为外显子删除造成Dystrophin蛋白的完全缺失。通过在剪接位点诱导G>A的突变,研究人员实现了目标外显子的完全跳读,在所有表达TAM的细胞中恢复了Dystrophin的蛋白表达,修复了心肌细胞的缺陷。

  • 原文来源:http://news.bioon.com/article/6728556.html
相关报告
  • 《新方法使得CRISPR基因编辑准确性高达98%》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2017-11-29
    • 在过去的五年里,CRISPR-Cas9技术因它的简单性和低成本,引发了基因编辑领域变革。但是,尽管这项技术能够可靠地发现和切割靶DNA序列片段,但是按照所希望的那样修复这种切割是一种碰运气过程。当目标就是校正DNA中导致遗传疾病的碱基变化时,高达50%的错误率是一个特别不容忽视的问题。 如今,在一项新的研究中,美国威斯康星大学麦迪逊分校生物医学工程教授Krishanu Saha领导的一个研究团队开发出一种能够让这种修复不那么容易地出错的新方法。相关研究结果于2017年11月23日在线发表在Nature Communications期刊上,论文标题为“Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing”。 与标准的CRISPR技术相比,这种新方法将按照所希望的那样精确地重写DNA序列的概率提高了10倍。这些研究人员利用一种被称作RNA适配子(RNA aptamer)的分子胶组装一种完整的CRISPR修复工具包并将这种工具包运送DNA切割位点上,从而实现这种更高的修复精准度。 Saha说,“这种工具包不仅提供了分子剪刀,而且还提供了细胞修复这种DNA切割所需的正确模板。鉴于这种RNA适配子比较牢固,而且非常稳定,我们所需的就是一下子将这种工具包运送到细胞中的合适位置上。” 与现有技术相比,新方法还有其他的几项优势。首先,这种工具包仅含有非病毒试剂,这就简化了生产过程,并降低了在未来开展遗传手术临床应用时存在的安全性问题。其次,将一种RNA适配子添加到这种工具包中要比修饰Cas9蛋白更加容易,而且提供更大的灵活性。 论文第一作者、Saha实验室的研究生Jared Carlson-Stevermer说,“我们能够将其他的生物分子添加到这种工具包中,就像是将一块额外的乐高积木放入一种已经存在的结构中。” 一个这样的例子是添加荧光标记,这允许研究人员很容易地在一个细胞群体中鉴定出所有经过精确编辑的DNA序列。Saha说,“通过寻找这些荧光标签,我们能够实现98%的准确率。” 在这项新的研究中,这些研究人员利用这种新方法以显著提高的保真度校正了源自一名庞贝氏症(Pompe disease)患者的干细胞系中的一种特定突变。庞贝氏症是由复杂的糖分子在器官和肌肉组织中堆积引起的一种罕见的遗传性疾病。 Saha说,“这类遗传手术并不缺乏候选的应用对象,这是因为有上万种疾病是由较小的序列差错造成的,而这种新方法能够修复这些错误。我们的下一个目标是在动物模型中测试这种方法,并且努力重写更长的DNA片段。”
  • 《美研究者发现CRISPR基因编辑技术失败的原因》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2019-05-09
    • 2018年7月5日,伊利诺伊大学芝加哥分校的研究者在Molecular Cell上发文,首次解释了CRISPR基因编辑技术为什么有时会无法工作,该研究有助于改进CRISPR系统,使其能够更有效地被应用到更广泛的领域。 CRISPR作为一项基因编辑工具能够帮助研究者从DNA中剔除不需要的基因或遗传物质,还可以添加所需的序列。CRISPR使用Cas9酶,像剪刀一样切除不需要的DNA,在要去除的DNA的任一侧上进行切割,细胞可以启动DNA修复,将DNA链的两端粘合在一起,否则细胞会死亡。研究人员发现,当使用CRISPR进行基因编辑时存在15%的失败概率,通常是由于Cas9蛋白在“dud”的位置与切割位点的DNA持续结合,阻止了DNA修复酶进入切口,阻碍了细胞启动修复过程,同时,卡住的Cas9也无法继续进行额外的DNA切割,限制了CRISPR的效率。研究者还发现Cas9在 RNA聚合酶不活跃的位点也无法发挥作用。引导Cas9仅在DNA双螺旋的一条链上退火,促进了Cas9与RNA聚合酶之间的相互作用,有助于将“dud”Cas9转化为有效的基因编辑工具。 该发现意义重大,因为在基因组编辑过程中,Cas9和DNA链之间的相互作用被认为是“限速步骤”。因此,这个阶段的变化最有可能影响整个基因组编辑的持续时间。如果我们能减少Cas9与DNA链相互作用的时间,就能减少酶量,降低接触,从而减少副作用,这对未来的临床治疗至关重要。