《山西煤化所在碳微球制备及其催化应用方面取得重要进展》

  • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
  • 编译者: guokm
  • 发布时间:2018-08-31
  •   近日,山西煤化所李学宽研究员团队与山西大学杨恒权教授团队合作,首次提出了以Pickering乳液为模板,基于表面活性剂乳滴限域空间组装来制备内部结构丰富的碳微球的合成策略,并取得成功。碳微球由于具有良好的化学稳定性、低的流体阻力、便于与反应系统分离等特点,在实际的工业应用中具有很大的优势。尤其是具有多级或多区域内部结构的微球,不仅能显著提高内部的传质,更让发生在其内部的化学过程的时空控制成为可能。因此,合成具有可控内部结构的碳微球受到研究人员的广泛关注。然而迄今为止,现存的方法都无法满足在微米尺度上合成具有内部丰富结构的碳球。

      面对这一挑战,研究人员提出了全新的合成策略,并且通过改变合成参数来可控的调整微球内部结构,得到一个前所未有的内部多结构的碳微球库。同时,研究人员通过对中间过程的捕捉以及根据乳滴限域空间内相变的理论基础,提出了微球内部结构的演变机理。更重要的是,研究人员还发现乳滴的限域效应,这种效应不仅影响了微球内部结构的变化,更提高了中孔结构的有序性。通过乙酰丙酸加氢反应,团队人员验证了这些内部结构丰富的微球在内部传质和分离回收方面的优势,突出了其在工程应用上的优越性。此外,该策略还能够一步对碳微球进行N、Co功能化,所得催化剂在芳香硝基化合物选择性加氢过程中展现了优异的活性、选择性以及稳定性。上述研究结果为碳材料以及其他无机材料的合成研究开辟了新的视野,所揭示的形成机理以及乳滴限域效应为制备具有内部复杂结构的微球提供了一个通用的原理。

      该研究得到了国家自然科学基金、山西省青年三晋学者等项目的资助与支持。相关工作发表于Angew. Chem. Int. Ed., 2018, 57, 10899?10904 (https://doi.org/10.1002/anie.201805022), 并得到Nature主页的highlight报道:“An interior-design guide for microscopic spaces—detailed polymer structures generated in water droplets can be turned into carbon spheres”(https://www.nature.com/articles/d41586-018-05740-7)。

相关报告
  • 《活性催化膜制备及其应用研究取得进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-03-22
    • 平衡反应是自然界中的常见现象,它限制了化学反应在给定温度、压力、浓度、配比等条件下的最大转化率,在有机化学反应如酯化、硝化、缩酮、酰化等化学工业中的重要反应中尤为常见。同时,这类反应还多存在产物或原料的热稳定性差、副反应多、连串反应等问题。因此,如何有效地提高这类反应的产率并进而提高其原料利用率、减轻后续分离过程的能耗是困扰有机化工生产的一个重要难题。ISPR(In-Situ Product Removal)技术,即产物原位分离技术,是解决这一难题的有效方式之一。 其中,渗透汽化催化膜反应器(Pervaporation membrane reactor, PVMR)以渗透汽化(Pervaporation, PV)膜分离为基础,将PV膜组件与催化反应过程相耦合,通过PVMR打破反应热力学平衡的限制,从而获得更高的反应转化率。但在传统催化膜反应器中,PV膜本身多显示出催化惰性(Catalytically inert,图1b),只具有分离性能。催化剂一般分散于料液主体中进行催化反应,产物通过分离膜进行移除。其存在传质路径多,扩散阻力大,传质推动力小等固有缺陷(图1a)。 为解决这些问题,北京化工大学膜分离过程与技术北京市重点实验室的张卫东、卿伟华团队,针对传统PVMR中液相主体扩散是其关键控制步骤的问题,提出通过制备具有疏松多孔催化层和致密分离层的复合结构活性催化膜(Catalytically active membrane, 图2a),将催化反应从料液主体迁移到膜的表面,在消除传统PVMR中主体扩散阻力的同时,降低由反应物向催化位点扩散阻力,实现反应分离耦合过程的强化。该研究团队成功将固体酸催化剂,通过相转化法有效固定在PV膜表面,形成了具有“三明治”式复合结构的活性催化膜(图1c,d),以酯化反应为探针,系统考察了活性催化膜的反应-分离耦合强化效果。团队通过合理匹配反应和分离两个关键速率,使得产物在活性催化膜内生成后,直接通过膜的分离作用移除出反应器(消除向料液主体的反向扩散),实现了真正意义上的产物原位分离(Genuine In-situ Product Removal)(图2a,b),进一步强化了热力学平衡向产物方向的移动,产物转化率达到了100%(图2c)。相关研究成果发表在化工顶级期刊Chemical Engineering Journal上。第一作者为卿伟华博士,通讯作者为张卫东教授。 该工作不但极大拓展了PVMR的应用范围,而且通过系统研究各组分在PVMR及膜内传质规律,阐明了活性催化膜的强化机理。对开发和设计活性催化膜及其反应器,特别是微小尺度及高空速条件下新型催化膜反应器具有重要的指导和应用价值。
  • 《山西煤化所在双金属催化剂协同效应研究方面取得重要进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2019-09-24
    •  双金属催化剂由于其协同效应,相比单金属组分催化剂,表现出优异的催化反应性能,因此双金属催化剂一直是多相催化领域的研究热点。通常认为双金属组分的距离应该是越近越好。近年来的研究却表明,多功能位点之间的间距显著影响催化剂性能。然而,传统制备方法很难实现对催化剂微观结构的精准调控,难以将双金属组分进行空间分离并对其间距进行调控,阻碍了建立直观可靠的构效关系及活性位点的辨认。   近日,中国科学院山西煤炭化学研究所覃勇研究员及其团队在Nature Communications上发表了题为“Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction”的研究论文。第一作者为张健康博士,通讯作者为覃勇研究员及高哲副研究员。   该团队利用原子层沉积(ALD)技术成功设计并制备了一系列的单金属催化剂(TiO2/Pt及CoOx/TiO2)、双金属组分紧密接触(CoOxPt/TiO2)、空间分离的催化剂(CoOx/TiO2/Pt)、以及选择性覆盖某一组分的催化剂(CoOx/TiO2/Pt/TiO2及Al2O3/CoOx/TiO2/Pt),考察了其对肉桂醛选择性加氢性能的影响(图1)。对于空间分离催化剂(CoOx/TiO2/Pt),通过改变TiO2壳层的厚度,可以实现对CoOx-Pt 双组分距离的精细调控。结果表明,双金属催化剂对目标产物肉桂醇的选择性具有明显的提高。对于CoOx-Pt 双组分空间分离的CoOx/TiO2/Pt双金属催化剂,其仍表现出优异的催化反应活性及选择性。当选择性覆盖Pt金属后(CoOx/TiO2/Pt/TiO2),催化反应的活性及选择性明显降低;当选择性覆盖CoOx组分(Al2O3/CoOx/TiO2/Pt)时,催化反应的活性及选择性几乎不受影响。   采用原位及非原位的XANES技术对催化剂反应前后的电子状态进行了详细表征(图2)。发现对于Pt组分,ALD制备的Pt纳米颗粒含有少量的高价态PtOx,而在加氢反应过程中PtOx被还原为金属态Pt0。对于CoOx组分,CoOx/TiO2、CoOxPt/TiO2及CoOx/TiO2/Pt三种催化剂中的CoOx具有不同的电子状态;反应过程中,CoOx/TiO2催化剂中的高价态钴物种被部分还原为低价物种(如CoO),而CoOxPt/TiO2及CoOx/TiO2/Pt中Pt金属的存在(产生的氢溢流效应)进一步促进钴物种还原,并且这两种催化剂中的CoOx还原程度相似。对于TiO2载体,CoOx/TiO2、CoOxPt/TiO2及CoOx/TiO2/Pt三种催化剂中的TiO2在加氢反应过程中都发生了Ti4+到Ti3+的还原。同时H2-TPR和H2-TPD表征也证明了Pt可以促进CoOx的还原。   基于原位XAFS、H2-TPR、H2-TPD、DFT计算等一系列表征分析,提出如下的反应机制:在Pt-Ov界面位点处,肉桂醛的C=O键在氧空位处吸附,在Pt上解离的氢物种将其加氢进而得到目标产物肉桂醇。对于单金属TiO2/Pt催化剂,Pt-TiO2界面处的Ov是有限的,导致其较低的选择性;CoOx的加入可促进Ov的生成,提供了大量C=O键吸附位点,导致双金属催化剂具有较高选择性,并且CoOx的长程助剂效应仍可以促进Ov的产生。溢流氢在TiO2上可在纳米尺度远程传输,从而表现出CoOxPt/TiO2及CoOx/TiO2/Pt几乎无差别的催化反应性能(图3)。该策略具有普适性,可实现不同金属-载体可控组装以及不同金属组分距离的精细调控,为辨识催化反应活性位点及理解双金属协同机制和反应机理提供了可靠的途径。