《科学家发现新型的CRISPR基因编辑工具CasX》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: huangcui
  • 发布时间:2019-02-13
  • 在短短7年时间里,Cas9已经成为了在人类、植物、动物和细菌中能够被使用的强大基因编辑工具,其能快速并准确地切割和拼接DNA,其也有望帮助开发治疗多种人类疾病的新型疗法。日前,一项刊登在国际杂志Nature上的研究报告中,来自加州大学伯克利分校的科学家们通过研究发现了一种新型的小型CRISPR基因编辑工具:CasX,其与蛋白Cas9较为相似,但比Cas9小很多。

    实际上,CasX是细菌和人类细胞中潜在的一种有效基因编辑工具,其似乎是在细菌中进化出的独立于其它Cas蛋白的一种特殊蛋白,CasX能够切割双链DNA,结合DNA并调节基因的表达,同时还能靶向作用特殊的DNA序列。由于CasX来自于细菌细胞中,因此相比Cas9而言,人类机体免疫系统或许能够更加容易地接纳CasX。

    研究者Benjamin Oakes说道,基因编辑工具的免疫原性、传递和特异性都非常重要,我们对CasX也抱有很大希望;这项研究中,研究者利用冷冻电子显微镜捕捉到了CasX蛋白在基因编辑过程中的快照图像,基于蛋白质的特殊分子组成和形状,研究者表示,CasX的进化独立于Cas9,其二者并无共同祖先。

    研究者表示,首先需要指出的是这些高度特异性的结构域是如何完成类似于他们在其它RNA引导的DNA结合蛋白中所观察到的作用,CasX的最小尺寸有助于展示其在自然界中使用的基本配方,而理解这种配方则能够帮助开发有用的基因编辑工具。最后研究者Jennifer Doudna说道,生物化学、基因编辑和结构性实验在单一研究中的极限就是能够帮助研究人员尽可能地全面理解CasX的作用机制,后期研究人员还将继续深入研究来阐明CasX的作用原理。

  • 原文来源:https://www.nature.com/articles/s41586-019-0908-x
相关报告
  • 《科学家发现10种新型细菌免疫防御系统》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-02-02
    • 在一项大规模的系统性研究中,来自以色列魏茨曼科学研究所的Rotem Sorek教授和他的研究团队揭示出细菌存在10种之前未知的细菌免疫防御机制。Sorek说:“我们发现的这些系统不同于之前看到的。但是,我们认为在这些系统中,有一到两种系统可能有潜力扩大基因编辑工具箱,而其他的系统指向人体免疫系统的起源。”相关研究成果于2018年1月25日在线发表在Science期刊上,论文标题为“Systematic discovery of antiphage defense systems in the microbial pangenome”。 Sorek解释道,细菌并不能够仅依靠CRISPR来对付噬菌体。事实上,许多噬菌体都具有抑制CRISPR活性的“抗CRISPR”蛋白,这提示着其他的系统收拾残局。Sorek和他的团队通过构建出一种扫描所有细菌基因组---迄今为止大约有5万种基因组---的计算机程序来开始对这些系统的研究。他们开发的这些算法并不寻找具有事先确定的特征的序列,而是寻找参与免疫防御的基因的“统计学特征(statistical signature)”,比如,它们在“防御岛(defense islands)”---在那里,几个防御相关的基因被发现位于彼此附近---中的位置。随后,鉴于免疫系统基因很少单独地发挥作用(即便在细菌中,也是如此),这些研究人员开发出复杂的计算机分析方法,以便理解哪些基因联合起来并共同组成一种防御系统。 一旦他们将潜在的防御基因从几百万个减少到几百个时,这些研究人员就需要测试他们鉴定出的候选机制。他们不是尝试从数百种不同的细菌中分离出基因序列,而是寻求合成生物学的帮助:订制这些基因。他们把成串的基因密码---总共有40万个碱基---送到一个商业实验室,从而合成数十种不同的多基因系统用于测试。他们将这些合成系统插入到天然免疫系统已被灭活的实验室细菌中。接着,他们让这些细菌接触噬菌体和其他的感染因子,以便观察这些移植的防御系统是否是有活性的。在他们研究的各种系统中,10种防御系统强力地保护了这些实验室细菌免受感染,因而将它们鉴定出为新的免疫防御系统。 Sorek说,在计算机分析和开展实验的各个阶段之间,这项研究要求在他的实验室里工作两年的六名人员付出大量的努力。这项研究是由Shany Doron博士和Sarah Melamed博士领导的,而且Gal Ofir、Azita Leavitt博士、Anna Lopatina博士和Gil Amitai博士密切参与其中。这个团队每隔一周就开一次“防御委员会(defense council)”来讨论不同的研究分支和他们已发现的防御机制。
  • 《科学家开发新型纳米颗粒 可更高效递送CRISPR基因编辑工具》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2019-07-29
    • 在一项新的研究中,来自中国科学院和美国塔夫茨大学的研究人员开发出一种在肝脏中显著改善的递送CRISPR/Cas9基因编辑工具的方法。这种递送方法使用生物可降解的合成脂质纳米颗粒,将这些基因编辑工具递送到细胞中,精确地改变细胞的遗传密码,效率高达90%。根据这些研究人员的说法,这些纳米颗粒是迄今为止报道的最有效的CRISPR/Cas9递送工具之一,并且可能有助于克服技术障碍,使得基因编辑在一系列临床治疗应用中得以实现。相关研究结果近期发表在Advanced Materials期刊上,论文标题为“Fast and Efficient CRISPR/Cas9 Genome Editing In Vivo Enabled by Bioreducible Lipid and Messenger RNA Nanoparticles”。 CRISPR/Cas9基因编辑系统已成为一种发现数百种基因功能的强大研究工具,而且当前正在作为一种治疗各种疾病的治疗性工具加以探索。然而,在临床应用具有可行性之前,仍然存在一些技术障碍。CRISPR/Cas9是一种大分子复合物,含有一种能够切割靶基因组序列双链的核酸酶(Cas9),以及一种对基因组进行扫描来协助这种核酸酶找到待编辑的特定序列的单向导RNA(sgRNA)。鉴于它是一种大的分子复合物,很难将CRISPR/Cas9直接递送到细胞核中,只有在细胞核中,它才能发挥它的作用。其他人已将这些基因编辑分子包装到病毒、聚合物和不同类型的纳米颗粒中以让它们进入细胞核中,但是较低的转移效率限制了它们在临床应用中的使用和效力。 这项研究中描述的脂质纳米颗粒包埋编码Cas9的信使RNA(mRNA)。一旦这些包含sgRNA的纳米颗粒的内含物释放到细胞中,细胞中的蛋白制造工厂接管这种mRNA模板,并利用这种模板表达Cas9蛋白,从而实现这种基因编辑工具的作用。这些纳米颗粒的一种独特特征在于它们是由脂肪链中含有二硫键的合成脂质制成。当这些纳米颗粒进入细胞中时,细胞中的环境破坏了二硫键而将它们拆解开,从而导致它们中的内含物快速高效地释放到细胞中。 论文共同通讯作者、塔夫茨大学生物医学工程副教授Qiaobing Xu说道,“我们才刚开始观察到CRISPR疗法在人体临床试验中的使用。这些疾病包括镰状细胞病、杜氏肌营养不良症、亨廷顿病,甚至许多癌症。我们希望这一进展将使我们朝着让CRISPR成为一种有效和实用的治疗方法的方向上又迈出了一步。” 这些研究人员将这种新方法应用于小鼠中,以便减少编码PCSK9的基因的存在,其中PCSK9的缺乏与较低的LDL胆固醇和下降的心血管疾病风险存在关联性。论文共同通讯作者、中国科学院北京分子科学国家实验室的王明(Ming Wang)教授说道,“这些脂质纳米颗粒是我们见过的最有效的CRISPR/Cas9载体之一。我们实际上能够在小鼠中以80%的效率抑制PCSK9表达,这表明它有前景用于治疗应用上。”