《安光所在高稳定性单纵模连续固体激光技术上取得研究进展》

  • 来源专题:光电信息技术
  • 编译者: 王靖娴
  • 发布时间:2025-06-04
  •   【内容概述】据中国光学期刊网6月3日报道,近期,中国科学院合肥物质院安徽光机所张天舒研究员团队,在全固态连续单频激光技术研究方面取得新进展。

      团队基于四镜环形腔采用单端LD泵浦Nd:YVO4(掺钕钒酸钇)晶体输出1064纳米连续单频激光,并结合碘分子锁频技术实现了输出激光频率锁定控制。激光器的单频特性,可以将其作为环境监测仪器设备激光源的核心组件,用于大气挥发性有机物、大气风场、临近空间等探测。连续单频激光器还广泛应用于激光放大器、引力波探测、量子光学等各个领域,单频激光技术的进步也极大地促进了大气遥感的发展。这些应用除了要求激光器为单频输出,对激光频率稳定性也有严格需求。然而,现有的半导体激光器、光纤激光器等在环境适应性方面存在不足,难以满足高要求的应用场景。研究团队采用了环形谐振腔结构结合碘分子吸收频率锁定技术,实现了单频激光的频率长期稳定性。该技术通过将激光频率锁定在碘分子特定吸收谱线的侧翼,利用反馈控制调整谐振腔的长度,实现了激光频率的高精度稳定。

      结果显示:激光器输出激光光束质量优异,M2因子分别在1.05(水平方向)和1.19(竖直方向),表明其具有良好的空间分布特性;输出激光线宽小于10兆赫兹,显示出良好的单频特性;自由运转状态下,一定时间内激光器频漂超过了200兆赫兹。而锁定状态下,激光器连续运行7小时频漂控制在±4兆赫兹以内,显著提高了频率稳定性。另外,为了适应未来的设备集成,激光器小型化、稳定性等需求,实现了连续单频激光器基于光机热电耦合的工程化设计与激光器系统搭建。

      研究成果有望成为大气污染和温室气体探测等环境监测仪器设备的核心器件,为大气环境保护和气候变化研究提供有力支持。

  • 原文来源:https://www.opticsjournal.net/News/PT250603000013MsPvS.html
相关报告
  • 《苏州纳米所印刷电子团队在高稳定性织物柔性发光显示方向取得研究进展》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-02
    •   柔性织物可穿戴电子电路系统是未来人体健康监测的重要基础平台,在疏松多毛、多孔洞、高弹性、易形变服装织物上,不以牺牲元器件的光电性能及面料的质轻、柔软、透气等特性为代价,集成高柔韧度、高机械可靠性的导线及光电学元器件仍是当前面临的行业共性技术难题。   在织物面料表面构建电子器件与电路面临如下诸多挑战:第一,如何克服多孔粗糙表面,实现高导电、高精度、耐拉伸电极电路的制备?第二,如何在保证电学功能的前提下最大限度保留织物轻柔透气特性?第三,如何实现电路电子元器件具有与织物共形变的柔韧可拉伸特性,从而实现可水洗、耐揉搓等高耐久性?   针对上述挑战,中国科学院苏州纳米所印刷电子团队近年来在织物基柔性可穿戴电子器件方面取得了一系列进展,发展了基于银纳米线(AgNWs)和金属网格(Metal Mesh)的透明导电薄膜,成功应用于织物基可拉伸光电器件(ACS Appl. Mater. Interfaces 2020, 12, 24074-24085; Adv. Electron. Mater. 2021, 2100611; Flex. Print. Electron. 2022, 7, 034002),并在印刷织物电路及器件方面做了大量工作(J. Mater. Chem. C, 2020, 8, 16798-16807; ACS Appl. Electron. Mater. 2021, 3, 1747-1757; Nano Res. 2022, 15,4590-4598),另外在织物基智能系统方面也进行了系列研究(ACS Appl. Mater. Interfaces 2022, 14, 29144-29155; Nano Res. 2022, DOI: 10.1007/s12274-022-5077-9.)   近日,针对印刷墨水中有机溶剂对织物造成破坏和残留问题,中国科学院苏州纳米所印刷电子团队袁伟副研究员等借鉴传统烫印技术,利用激光刻蚀结合热转印开发了一种全固态、可图案化、普适性的织物基交流电致发光器件(ACEL)制备方法。制备的织物发光器件具有优异的机械和耐洗涤性能,器件界面剥离强度高达700N/m,按照标准洗涤流程机洗5次后器件发光均匀性不受影响,亮度仅降低9.7%,在针刺和裁切等物理损伤下仍然保持正常的发光功能。此外,研究者还展示了蓝、绿、黄等多种彩色图案,并且演示了利用家用工具在织物上DIY发光logo的制备流程。最后,将制备的发光器件集成到服装上,实现了动态像素化数字演示。这种普适的织物发光器件加工技术的开发将进一步促进未来可穿戴显示器件的应用。  在织物上制备ACEL器件的工艺流程如图1(a)所示。从底电极、发光层到透明顶电极,都预先结合激光雕刻技术制备好,具体步骤如下:第一步,在离型膜表面分别刮涂复合导电层和热熔胶层,利用激光雕刻技术进行图案化处理,热转印到织物表面,标记为1号和2号电极,其中1号电极与底电极相连,2号电极与随后的透明顶电极相连;第二步,在离型膜表面刮涂发光层,利用激光雕刻技术进行图案化处理,随后热压在底电极上;第三步,同样利用激光雕刻技术对透明顶电极进行图案化处理,随后热压在发光层上,透明顶电极覆盖整个发光层并与2号电极相连。该器件的工作原理是形成一个电容器结构,上下两层为电极,中间为发光层,顶部的透明电极可允许光输出。如图1(d)所示制备的器件在模拟水洗状态下,依旧具有出色的机械性能。   本研究工作的重要亮点之一是引入了蛇形可拉伸金属网格透明电极,该电极在550 nm处其透过率为77.16%,同时方阻低至134.4 mΩ/sq,仅为ITO电极方阻的0.5%。此外,该电极在拉伸100%时电阻变化仅为~10%,在经过长达8000次的弯折循环测试和50次的粘附力测试后,电极的阻抗几乎不变。数据表明制备的透明金属网格电极具有优异的机械稳定性,是织物发光显示器件实现高稳定性的关键。   研究还对制备的弹性可拉伸TPU成分与发光及介质材料配比进行了系统评估,结合发光层的力学性能和发光器件的静态数据,得出最优的发光层为TPU:ZnS/Cu:BaTiO3三者的质量比为8:20:4,基于此比例,还系统研究了驱动电压和频率对器件发光亮度和颜色的关系。   研究者对器件的发光性能进行了系统全面的表征,包括机械耐久性、高温高湿环境下的稳定性、耐水洗性以及物理损坏,如图4所示,器件在各种拉伸条件下仍保持着稳定的性能;研究还展示了该织物蓝、绿、黄多色发光LOGO器件及其自由可裁剪及抗针刺能力,并实现了织物面料上芯片驱动的智能动态化数字动态显示。该研究成果证明了在织物面料表面构建高机械稳定性和环境适应能力的发光显示器件与电路结构的可行性,为未来柔性织物可穿戴电子系统的发光显示部件提供了一种新的解决方案。   相关工作以Thermally Laminated Lighting Textile for Wearable Displays with High Durability为题发表在ACS Applied Materials & Interfaces上。中国科学院苏州纳米所硕士研究生林勇(已毕业,现为南京大学在读博士生)和博士后陈小连为文章共同第一作者,通讯作者为袁伟副研究员和苏文明研究员;本工作还得到了南京大学现代工程与应用科学学院孔德圣教授团队的大力帮助。
  • 《上海光机所在光纤锁模激光器信噪比提升技术方面取得新进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-07-15
    • 中国科学院上海光学精密机械研究所高功率激光物理联合实验室在光纤锁模激光器信噪比提升技术上取得新进展,提出一种基于Lyot滤波效应的非线性相移抑制技术,实现了光纤锁模激光器信噪比(SNR)的提升,相关成果发表在《optical & laser technology》上。 在高功率拍瓦激光系统中,种子激光脉冲的SNR是至关重要的参数,前端输入脉冲的信噪比直接影响了整个系统的信噪比。目前应用于神光II拍瓦前端的是商用飞秒固体锁模激光器,其信噪比约为90dB,无法采用光纤锁模激光器的原因之一在于其信噪比无法与固体锁模激光器相比。光纤锁模激光器在固体介质中传播距离更长,在较高的峰值功率密度条件下,自相位调制(SPM)引起的非线性相移会严重影响脉冲的频谱和时域特性。当累积的非线性相移无法控制或补偿时,导致的脉冲分裂会极大地影响脉冲的SNR。 课题组提出了一种提高锁模光纤激光器SNR的新方法。通过改变激光谐振腔中保偏光纤之间的连接角度产生Lyot滤波效应,针对性地抑制了光纤锁模激光器中强非线性相移在锁模光谱上产生的Kelly边带,提高了锁模光纤激光器的信噪比。与其它光谱滤波方法相比,Lyot滤波方案具有插入损耗小,结构简单,调制深度和透射峰波长可调等优点,在不影响锁模孤子形状的前提下,能更有效地对Kelly边带进行抑制。实验表明,当光纤连接角从0°增加到6°时,输出脉冲的信噪比增加8dB。具有高信噪比性能的光纤锁模激光器,有望在未来的高功率激光系统中取代固体激光器作为新一代种子光源。 图1 光纤连接角度为0°和10°时,Lyot 滤波器透过曲线对Kelly边带的抑制 图2 实验中不同角度下的脉冲时域波形和锁模光谱 图3 实验中熔接角度分别为0°和6°的时域波形对比