《上海光机所提出一种稀土高掺石英光纤制备新方案》

  • 来源专题:光电情报网信息监测服务平台
  • 编译者: husisi
  • 发布时间:2020-07-22
  • 近日,中国科学院上海光学精密机械研究所高功率激光单元技术实验室提出了一种基于溶胶凝胶法结合石英管内壁涂覆与熔融拉锥工艺的光纤制备新方案。研究团队利用该方案,在高SiO2含量玻璃光纤中实现Yb3+离子高浓度掺杂。

    自20世纪90年代提出单频激光这一概念以来,单频激光技术不断取得显著进展,并且取得越来越广泛的应用。稀土掺杂单频激光器通常要求高浓度的稀土离子掺杂。然而,高SiO2含量的玻璃基质因其结构特性难以实现稀土离子高掺,商用SiO2光纤中Yb3+离子的掺杂水平通常低于1wt%。

    研究团队提出的光纤制备新方案主要分为三个步骤:石英管内壁涂覆、膜层的热处理、二次熔融拉锥过程。利用该方案,团队成功制备得到~1.03μm高SiO2含量玻璃有源光纤,Yb3+掺杂浓度高达5.7wt%,激光输出的信噪比高达70dB。制得的光纤很容易与商用石英基无源光纤器件(如光纤光栅)熔接。

    (a)(b)(c)稀土高掺石英包层光纤的制备流程图;(d)自制光纤与商用石英基无源光纤组件熔接的显微拍图;(e)激光输出

    该方案克服了高SiO2含量玻璃光纤中Yb3+离子溶解率低的问题,有望应用于制备短腔高增益石英基光纤。研究团队指出,该方案中只要该组分溶胶能够成功制备得到且具有良好的分散性,光纤的纤芯组成可以替换为任何高稀土掺杂组分。因此,该方案将对制备±1um、±1.5um甚至±2um石英基单频种子激光器均具有参考意义。

相关报告
  • 《上海光机所提出了一种高功率光纤激光倍频新技术》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-11-12
    • 近日,中国科学院上海光学精密机械研究所高功率光纤激光技术实验室在高功率光纤激光倍频领域取得新进展。提出少频激光谐振倍频的技术,实现了高功率高效率的连续波倍频激光输出,该技术提供了一种获得高功率可见光光纤激光的新思路。相关工作发表在Optics Letters。 高功率可见激光在天文与地球物理、量子信息技术等领域有着广泛的应用。光纤激光外腔谐振倍频是一种获得高效率高功率可见光激光的手段。但是,对于谐振腔倍频,一般需要入射基频光为单频激光,而单频光纤激光的功率受限于受激布里渊散射,因此通过倍频获得的可见激光的功率同样受限。 为此,研究人员提出了少频激光谐振倍频的方法以进一步提高可见光光纤激光的输出功率。实验中,对单频激光进行周期性相位调制后,光纤放大获得高功率的1064nm少频激光。调节相位调制频率与倍频腔自由光谱区一致,在腔锁定后实现了少频激光的腔内谐振增强。验证实验中获得了30W的532nm倍频激光,效率超过80%,与单频情况一致。相位调制法被广泛应用于抑制受激布里渊散射,获得高功率窄线宽光纤激光,数千瓦数十GHz线宽的光纤激光亦有报导。因此,该方法有望突破单频光纤激光的功率限制,获得高效率千瓦级可见光激光。 图1 相位调制产生少频激光谐振倍频装置示意图 图2 单频和少频条件下,正弦射频功率分别为17.2 dB,23.2dB和25 dB时,532nm的输出和转换效率
  • 《突破 | 上海光机所提出优化光刻胶飞秒激光多光子聚合效率新方案》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-04-22
    • 近期,中国科学院上海光学精密机械研究所薄膜光学实验室在提升光刻胶的飞秒激光多光子聚合效率方面取得进展。研究团队通过在光刻胶中引入带有非线性吸收效应的溶剂,有效降低了光刻胶的多光子聚合阈值,拓宽了光刻胶的飞秒激光加工窗口,并能够优化飞秒多光子聚合加工的精度。相关成果以“An easy method to improve efficiency of multi-photon polymerization: Introducing solvents with nonlinear optical absorption into photoresist”为题发表在《光学与激光技术》(Optics and Laser Technology)上。 飞秒激光加工由于其可以突破光学衍射极限而成为一种重要的微纳结构制造技术,这是基于光刻胶对飞秒激光的多光子吸收(MPA)效应,调控光刻胶聚合阈值是提升飞秒激光加工精度和效率的重要技术途径,其技术核心是调控光刻胶中的光引发剂。研究团队通过解析光刻胶在飞秒激光辐照后的光-物理-化学反应过程,认为光刻胶中溶剂的MPA效应也会影响聚合阈值,提出并实验验证了利用溶剂的非线性吸收效应增强光刻胶体系MPA效应的新方案。 研究人员选择了三种常用的光引发剂IRG369、ISO和TPO分别混合在不具有MPA的线性溶剂EA和具有MPA的非线性溶剂CPon中,相比于引发剂溶解在线性溶剂中,溶解在非线性溶剂中的MPA阈值降低~23%。研究人员进一步配制了带有聚合单体PETA的光刻胶,利用飞秒激光进行曝光实验,结果显示非线性溶剂配置的光刻胶体系的多光子聚合阈值降低16%。 该研究成果为优化光刻胶的飞秒激光多光子聚合加工窗口、效率和精度提供了一种新颖且简便的方案,并验证了混合溶液中各成分的非线性吸收存在叠加增强效应,为优化光刻胶性能提供了思路。这种非线性吸收叠加增强也用于优化其它溶剂化的非线性光学技术,如双光子显微技术和双光子荧光成像等。 图1 (a)光刻胶A和B的MPP聚合点直径统计(b)引发剂TPO分别在非线性溶剂CPon和线性溶剂EA中,以及溶剂CPon自身的MPA强度 图2 光刻胶中引发剂分子和溶剂分子的MPA叠加过程示意图:非线性溶剂的MPA使体系中存在更多的激发态碟子,从而促进了MPA和后续的聚合,降低了MPP阈值