《研究人员创造新型硅纳米颗粒可检测并治疗癌症》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2016-08-19
  • 在一篇纳米医学杂志 Nanotechnology, Biology and Medicine 发表的论文中,莫斯科国立大学和莱布尼茨光子技术研究所的研究人员表示他们创造出了世界上第一种硅纳米颗粒,能够同时检测癌症并发挥治疗的作用。他们在多孔硅中发现了一种物质,这种物质一方面能够发现癌症,另一方面能通过分解成硅酸发挥治疗功效。而硅酸是维持骨骼和结缔组织强度的一种重要化合物。多孔硅纳米粒子被证明是一种完全无害的治疗检测药剂,适用于多种类型的癌症。

相关报告
  • 《新型纳米颗粒有望使癌症治疗更安全、更有效》

    • 来源专题:新药创制
    • 编译者:杜慧
    • 发布时间:2025-06-17
    • 研究人员开发出一种新型纳米颗粒,有望提高基于超声波的癌症治疗效果,同时减少对健康组织的损伤,并帮助防止肿瘤复发。 这项发表在《Nano Letters》杂志上的研究表明,这种新型纳米颗粒可以显著改善高强度聚焦超声(HIFU)治疗的安全性和疗效。该技术利用超声能量破坏实体肿瘤,但传统方法需要大量能量,容易产生热量并损伤周围正常组织,而且即使肿瘤被破坏,仍可能有癌细胞残留导致复发。 由俄勒冈健康与科学大学(OHSU)骑士癌症研究所Cedar中心的研究人员开发的这种纳米颗粒,大小约为纸张宽度的千分之一。其表面带有微小气泡,在受到聚焦超声作用时会破裂,释放能量,从而更精准地摧毁肿瘤。此外,纳米颗粒表面还涂有一种特殊的肽分子,使其能够更容易附着并进入癌细胞。 为了增强治疗效果,研究人员还在肽上连接了一种强效化疗药物,形成“双重打击”策略:超声波物理性破坏肿瘤,药物则负责清除残留的癌细胞。在黑色素瘤的临床前模型中,这种联合疗法比单独使用任何一种治疗方式都更有效。 实验结果显示,该纳米颗粒可将所需超声能量降低多达100倍,从而避免对周围组织造成热损伤。在小鼠实验中,联合治疗显著提高了肿瘤消失率和生存期,部分小鼠的肿瘤完全消失,且60天内未出现明显副作用。 研究团队表示,这一平台未来有望应用于感染性疾病和心血管疾病的治疗。他们目前正计划将其与免疫疗法结合,进一步提升抗癌效果。这项始于2018年的研究,现已发展为一个多功能治疗平台,标志着癌症治疗向更智能、更精准的方向迈进。
  • 《自愈纳米颗粒的广泛应用》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-11-25
    • AZO于2020年11月24日发布关于纳米颗粒的内容,文章指出自愈材料的有用性在两年前被发现,这种材料至今仍引起科学界的兴趣,研究人员使用纳米技术来增强自愈材料的有效性。 纳米颗粒可以分散在整个材料(如聚合物),穿透裂缝,并帮助启动自我修复过程。本文讨论了自愈纳米颗粒的广泛应用。 自愈纳米粒子的一般性质和机理 在聚合物中加入纳米材料和纳米结构可以提供丰富的官能团、大的表面积和独特的特性(导热性、导电性和生物性)来帮助愈合过程。 纳米技术也有助于理解潜在的微和纳米级聚合物链的相互作用。这些信息有助于研究人员设计出具有多种应用的更先进的自愈聚合物。例如,科学家已经开发了一种利用环氧树脂、聚氨酯、橡胶和聚甲基丙烯酸甲酯的自愈合碳纳米管纳米复合材料。 自愈过程的有效性取决于纳米颗粒的类型、大小和形状。自愈合聚合物/碳纳米管的效率取决于其他因素: 矩阵的修改 纳米管的功能 处理方案 矩阵-纳米粒子相互作用或兼容性 2006年,马萨诸塞大学阿姆赫斯特分校材料研究科学与工程中心的托马斯·罗素博士指出,这些材料可以修复任何形成的裂缝,且几乎不受外部侵入。 纳米膜还可以促进自愈特性。一些常用的纳米膜是纳米二氧化硅、石墨烯、碳纳米管(CNTs)、陶瓷氧化物和纳米纤维素。 研究人员报道,纤维素纳米晶须的加入使聚乙烯醇的抗拉强度提高了60倍。类似地,具有高导热性的石墨烯和碳纳米管等导电纳米管被用作纳米级加热器。因此,纳米颗粒被用来增强聚合物基质内的自愈机制。 自愈合纳米颗粒的应用 聚合物电损伤的自我修复 电网需要耐用、稳定和强介电聚合物来适当地绝缘导线。 高的局部电场导致电树,导致介电材料的结构破坏和导电退化,以及大规模的设备故障。 科学家们已经证明,在热塑性聚合物中加入超顺磁性纳米粒子(小于体积百分比的0.1%)可以帮助修复被电树刺伤的部位。这一措施也将确保绝缘性能的恢复。 在振荡磁场的影响下,纳米粒子移动到电树上并产生更高的局部温度。这将导致修复聚合物中的电树通道。这种方法也增加了电子和能源应用的电力电缆的耐久性。 乳腺癌术后复发的预防 水凝胶在1960年首次被报道。水凝胶是由交联的亲水聚合物组成的三维网络,它在水中膨胀。由于分离的聚合物链的物理和化学交联,它可以在不破坏结构的情况下保持大量的水。 水凝胶是一种非常重要的材料,特别是在肿瘤治疗和再生医学方面。这是因为它具有调节组织微环境的仿生能力。 利用席夫碱基连接,科学家们开发了一种基于石墨烯纳米颗粒的新型自愈合水凝胶。该石墨烯纳米颗粒基自愈水凝胶由硫酸软骨素、多醛和支化聚乙烯亚胺共轭石墨烯组成。 石墨烯纳米颗粒自愈水凝胶具有100%的自愈性,力学性能得到改善。一项小鼠乳腺癌术后复发的体外研究显示了基于石墨烯纳米颗粒的自愈合水凝胶的潜力。 自愈的电池 锂离子可充电电池通常使用碳基负极。这些电池容易形成枝晶,枝晶是在一个电极上发育并向另一个方向生长的小型金属结构。它们可能会引起短路甚至火灾。 尽管硅电极每单位体积能提供更高的能量,但由于充电周期的膨胀和收缩,它经常会崩溃。 伊利诺伊大学的研究人员开发了一种自愈电极,利用嵌入微胶囊的导电物质。电极的膨胀导致微胶囊破裂,使裂纹填充材料分散。 自我修复DNA纳米结构 科学家最近设计了具有自愈特性的DNA纳米结构。这些纳米结构可用于药物传递和诊断。然而,在应用DNA纳米结构之前,首先要做的是开发一种对抗核酸酶攻击的策略,即找到保护或修复受损DNA分子的方法。 纳米结构通常在24小时内在体温下的血清中被破坏。研究人员已经创造了各种策略,如dna -纳米管来稳定血清中的纳米结构。在含有纳米管的血清中加入这些更小的DNA贴片可以修复受损的结构。 自愈合石墨烯基复合生物传感器 可穿戴电子传感器是一种功能强大的设备,有助于疾病的早期诊断,并有助于持续监测个人的健康状况。然而,这些可穿戴传感设备在与人体接触时,不可避免地会受到划伤和机械割伤,从而导致其故障。 在一项概念验证中,研究人员揭示了一种具有自愈特性的柔性纳米关节传感器的发展。他们报道了一种带有功能化金纳米颗粒薄膜的自我修复聚合物的修正提高了基底和传感薄膜的愈合效率。