《EPFL利用激子将电子产品引入未来》

  • 来源专题:集成电路
  • 编译者: Lightfeng
  • 发布时间:2018-07-29
  • 激子可以彻底改变工程师接近电子产品的方式。 EPFL研究人员创造了一种新型晶体管,在电路的组成部分中使用这些粒子来代替电子。 值得注意的是,他们克服了迄今为止无法克服的障碍,通过使用两种2D材料作为半导体,让这种基于激子的晶体管可以在室温下有效地发挥作用。 他们的研究发表在今天的“Nature”杂志上,在激子学领域有许多启示,这是光子学和自旋电子学领域最有前途的新研究领域之一。

    EPFL纳米电子与结构实验室(LANES)负责人Andras Kis说:“我们的研究表明,通过操纵激子,我们已经发现了一种全新的电子方法,我们正在目睹一个全新的研究领域的出现,但我们还不知道其全部范围。”

相关报告
  • 《探索 | 双激子结合能可用于电子产品》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2022-03-15
    • 澳大利亚墨尔本斯威本科技大学的研究人员首次使用先进的光谱技术量化了两个激子结合成双激子状态所需的能量。他们与澳大利亚国立大学的研究人员合作,直接测量二硫化钨 (WS2) 中的双激子结合能,二硫化钨 (WS2) 是一种二维材料,属于过渡金属二硫化物 (TMDC) 半导体家族。该研究发表在《2D Materials》上。 该团队表示,其研究结果可用于开发基于 TMDC 中双激子流的未来应用。 研究人员使用双量子多维相干光谱 (2Q-MDCS),一种用于探测双激发态的技术,来识别和分离单层 WS2 中的光激发双激子。为了明确地测量原子级薄 TMDC 材料中的双激子特征,研究人员运行了一系列具有精确控制的相位关系和明确定义的波矢量的超短光脉冲。 斯威本教授杰夫戴维斯说,“通过使用具有高精度的多个脉冲,我们可以选择性地直接探测双激发双激子状态,同时消除单激发激子状态的任何贡献,2Q-MDCS 方法使研究人员能够对双激子结合能进行直接实验测量。这种直接激发双激子的能力对于光致发光光谱等更常见的技术是无法实现的。” 图注:杰夫•戴维斯教授是量化双激子结合能研究的通讯作者,他领导的Swinburne超快光谱实验室。该大学的研究人员使用先进的光谱方法量化了两个激子结合成双激子态所需的能量。这项工作对开发新的量子材料和量子模拟器具有重要意义 当研究人员使用 2Q-MDCS 观察双激子时,相关激子会产生一个信号,相关激子是相互作用但未结合的激子对。研究人员认为未结合的双激子状态和双激子之间的能量差是双激子结合能的基本定义,测量值为 26 ± 2 meV。 “双激子峰和相关的双激子峰之间的能量差是测量双激子结合能的最佳手段,”研究员 Mitchell Conway 说。 “这是一个令人兴奋的观察,因为其他光谱技术没有观察到这些相关的激子。” 此外,研究人员还确定了单层 WS2 中双激子的性质。当使用 2Q-MDCS 解析双激子峰时,他们观察到由两个自旋相反的亮激子组成的双激子,称为亮-亮间隔双激子。 相比之下,报告单层 WS2 中的双激子的光致发光测量无法识别所涉及的特定激子。以前用于识别双激子的技术仅限于测量来自双激子到激子跃迁的光子。这种转变可能无法反映双激子或激子相对于基态的精确能量。 除了增加对双激子动力学和特征能量尺度的科学理解之外,该发现还可以支持基于双激子的设备的开发,例如更紧凑的激光器和化学传感器。 由于材料的维度降低,激子和激子复合物(例如双激子)的结合能在二维材料中得到增强。这种增加的结合能使双激子更容易获得,即使在室温下也是如此,并为一系列低能技术引入了在新材料中使用双激子的可能性。 康威说,“在我们将这些二维材料应用于下一代低能电子设备之前,我们需要量化驱动其功能的基本特性,准确识别单层半导体中双激子特征的能力也有助于推进新量子材料和量子模拟器的开发。”
  • 《为未来的电子产品创造二维异质结构》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2019-10-14
    • 纳米材料可以提供许多新兴技术的基础,包括极其微小,灵活和透明的电子产品。 尽管许多纳米材料展现出令人鼓舞的电子特性,但科学家和工程师仍在努力将这些材料最好地整合在一起,最终用它们创建半导体和电路。 西北工程研究人员已经从石墨烯和硼苯中的两种材料创建了二维(2D)异质结构,迈出了从这些纳米材料创建集成电路的重要一步。 负责这项研究的沃尔特·P·墨菲(Walter P. Murphy)材料科学与工程学教授马克·赫尔萨姆(Mark Hersam)表示:“如果要破解智能手机内部的集成电路,就会看到许多不同的材料集成在一起。” “但是,我们已经达到了许多传统材料的极限。通过将诸如硼苯和石墨烯之类的纳米材料整合在一起,我们正在为纳米电子学开辟新的可能性。” 在海军研究办公室和国家科学基金会的支持下,研究结果于10月11日发表在《科学进展》杂志上。除Hersam以外,应用物理学博士生Liu Xiaolong Liu还是该作品的合著者。 创建一种新型的异质结构 任何集成电路都包含许多执行不同功能的材料,例如导电或使组件保持电气隔离。但是,由于材料和制造技术的进步,电路中的晶体管变得越来越小,但它们已经接近达到可以达到的最小极限。 诸如石墨烯的超薄2D材料有可能绕过该问题,但是将2D材料集成在一起是困难的。这些材料只有一个原子厚,因此,如果两种材料的原子排列不完全,则集成不太可能成功。不幸的是,大多数2D材料在原子尺度上并不匹配,这对2D集成电路提出了挑战。 Borophene是Hersam和同事在2015年首次合成的2D硼版本,具有多态性,这意味着硼可以具有许多不同的结构并使其适应环境。这使其成为与石墨烯等其他2D材料结合的理想选择。 为了测试是否有可能将两种材料整合为一个异质结构,Hersam的实验室在同一衬底上同时生长了石墨烯和硼苯。他们首先生长石墨烯,因为它在较高的温度下生长,然后将硼沉积在同一衬底上,并使其在没有石墨烯的区域中生长。这个过程产生了横向界面,由于硼烯的适应性,两种材料在原子尺度上缝合在一起。 测量电子转换 该实验室使用扫描隧道显微镜对2D异质结构进行了表征,发现界面上的电子跃迁异常突然-这意味着它可能是制造微型电子设备的理想选择。 Hersam说:“这些结果表明,我们可以在未来制造出超高密度器件。”最终,Hersam希望实现日益复杂的2D结构,从而产生新颖的电子设备和电路。他和他的团队正在致力于用硼烷创建其他异质结构,并将其与越来越多的数百种已知2D材料相结合。 他说:“在过去的20年中,新材料已经实现了晶体管技术的小型化并相应提高了性能。” “二维材料有可能实现下一个飞跃。” ——文章发布于2019年10月11日