《石墨烯板对硅酸钙涂层的微观结构、力学性能以及生物相容性的影响》

  • 来源专题:纳米科技
  • 编译者: chenfang
  • 发布时间:2015-06-16
  • 中国科学院陶瓷研究所研究人员研究表明陶瓷是一个很好的生物医学植入物候选涂料,能够改善生物相容性和加速早期骨整合。然而陶瓷材料断裂韧性和耐磨性差限制了植入的长期性能。石墨烯板则可以提高陶瓷材料的力学性能和生物相容性。

相关报告
  • 《研究揭示了石墨烯界面在微观层面的特性》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2021-04-25
    • AZO于2021年4月22日发布关于石墨烯的内容,文章指出石墨烯是一种二维材料,其中的碳原子组织成六边形结构。这种材料具有特殊的化学和物理性能,如导热性和导电性、机械灵活性、化学稳定性、选择性透水性、亚纳米厚度和光学透明度。 由于这些特性,石墨烯在催化剂、电能存储、海水淡化和透明电极中的许多不同应用得到了广泛的分析。 石墨烯是一种极薄的材料,因此,为了使其在实际应用中可行,它需要沉积在作为衬底的其他材料上。 其中一个具有重要科学意义的课题是衬底上的水和石墨烯之间的嵌层是如何发生的。润湿性是指界面水与固体表面保持接触的可能性,它依赖于材料的疏水性。石墨烯的润湿性不同于大多数材料,其润湿性随基底类型的不同而不同。 更具体地说,基底的润湿性不受其表面存在一层石墨烯的强烈影响。石墨烯这种不寻常的润湿性可以用“润湿透明”一词来解释,因为石墨烯-水界面的润湿特性通过薄石墨烯对衬底和水之间的相互作用没有太大的影响。 通过不同的水接触角(WCA)测量,分析了石墨烯在不同基体上的润湿性。WCA是一种常用的量化材料疏水性的方法,因为当材料变得更疏水时,材料与水滴之间的接触角也会增加。 这些分析暗示,尽管石墨烯单层的润湿性相当透明,但随着层数的增加,石墨烯变得越来越疏水。 但WCA测量只能提供石墨烯-水界面宏观特征的数据,不能提供石墨烯-水界面存在的界面水的完整图像。 虽然其他方法,如基于反射的红外光谱或拉曼光谱,已经常用于定量微观性质,但它们不适合选择性地显示界面水分子。 这是因为界面水分子的振动光谱信号完全被本体水发出的大信号所掩盖。因此,分子水平的研究在石墨烯这一领域的研究中很大程度上缺乏也就不足为奇了。 最近,韩国首尔基础科学研究所(IBS)分子光谱与动力学中心(CMSD)和高丽大学的一个研究团队展示了石墨烯润湿性的起源。 使用一种被称为“振动和频率产生光谱(VSFG)”的方法,研究人员有效地可视化了石墨烯-水界面上水分子的氢键结构。作为二阶非线性光谱学,VSFG可以选择性地检测中心对称性受损的分子。 由于在整体液体中,水分子的方向呈各向同性分布,因此可见性石墨烯界面上的水分子是不可见的,因此可见性石墨烯界面水分子的结构和行为是分析的完美技术。 研究人员还注意到包裹氟化钙(CaF2)衬底的多层石墨烯上的水分子的VSFG光谱。该团队能够监测到水分子氢键结构的差异。 当存在四个或更多石墨烯层时,VFSG光谱中出现一个约3600 cm−1的典型峰值。这种峰与水分子有关,水分子中悬浮的-OH基团不会与相邻的水分子形成氢键,这是疏水界面上常见的典型特征。 这是首次观察到水分子在水-石墨烯界面上的氢键结构。 该团队还比较了从量化光谱估算的VSFG润湿性值与与量化wca相关的计算附着力能。 研究人员发现,这两种特征彼此高度相关。这表明VSFG可以在分子水平上分析二维材料的润湿性。 这也证明了VSFG技术可以作为一种量化水在隐藏表面上的附着能的替代方法,而在隐藏表面上量化水接触角是困难的,甚至是不可能的。 “这项研究是第一个案例描述石墨烯表面疏水性的增加在分子水平上取决于石墨烯层的数量,”和“振动和频代光谱学可以用来作为一个通用的工具,了解任何功能的二维材料的属性,“第一和指出该研究的第二作者KIM Donghwan和KIM Eunchan KIM。
  • 《金属氧化物涂层使石墨烯在2017年的启蒙大会上更加多才多艺》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2017-11-07
    • 上个月,nanotechweb.org在英国的Ricoh Arena考文垂参加了科学和工业活动的薄膜和涂层技术。在介绍的研究中,有两个项目主要是用金属氧化物纳米管涂层单层石墨烯。英国克兰菲尔德大学的Adrianus Indrat Aria与剑桥大学和工艺创新中心(CPI)的合作者一起,应用氧化铝形成了一个复合屏障层,而英国伦敦帝国理工学院的Peter Petrov使用了钛酸锶的独特特性,制造了一个可调节的电容器。 理论上,石墨烯应该代表一个理想的超薄阻挡层,因为碳原子之间的孔隙比氦原子半径要小。然而,在实践中,晶体的边界和缺失的原子允许蒸汽通过材料渗透,而在飞机之间的弱范德瓦尔斯键意味着即使是叠加的多个石墨烯层也能被穿透。 艾瑞亚报告的解决方案是采用CVD形成的石墨烯单层,然后使用原子层沉积(ALD)涂上25 - 50nm厚的氧化铝层。由于材料具有很强的疏水性,在单层石墨烯上实现保形涂层是很困难的。然而,Aria发现,如果在CVD阶段后立即应用该涂层,则不需要额外的种子层或石墨烯的前功能化,而石墨烯基复合材料仍然是亲水的,或者如果延长停留时间用于达到最佳的饱和条件。所制备的纳米级复合材料适用于金属钝化、器件封装和透明膜层。 虽然一层石墨烯与50纳米氧化铝成双成对,但并没有达到像OLED封装那样的高灵敏度应用所要求的极端不透气性,但在达到必要的水汽传输速率之前,cvd - ald过程可以重复。使用这种技术制造的屏障层可以适当地展示低传输速率,厚度只有几十纳米,相比于目前在电视和智能手机上使用的毫米厚的层。 除了作为屏障材料的用途外,石墨烯当然是由于其optolectronic特性而对微电子的需求。同样,在多层堆叠设备中,也可以应用于涂层和分离活性石墨烯层。这意味着在制作和加工过程中,精细的石墨烯结构可以得到保护,而且它们的性能也会随着时间的推移而保持稳定。 不可能的外延 Petrov还报道了石墨烯上金属氧化物层的沉积,但在这种情况下,材料是钛酸锶(SrTiO3),目的是制造可调谐的电容器。研究首次揭示了石墨烯外延氧化薄膜在SrTiO3和MgO基板上的生长机理。 Petrov描述了在将CVD石墨烯层转移到SrTiO3基板上后,在顶部使用反射高能电子衍射(RHEED)辅助脉冲激光沉积技术,在顶部增加了50纳米厚的SrTiO3薄膜。高分辨率透射电子显微镜(HRTEM)和x射线衍射(XRD)使研究人员能够确定石墨烯上的SrTiO3纳米层与底层基片保持着一个外延的关系。单层石墨烯可防止氧化层与基体之间的电子相互作用,所以上纳米层的外延生长应该是不可能的。 Petrov解释道,答案在于石墨烯层的初始局部缺陷(如晶界),以及在SrTiO3基底上的石墨烯的范德瓦尔斯键的性质。这些缺陷就像桥柱点,使得SrTiO3的外延生长在石墨烯上。这种SrTiO3柱的生长也增加了界面的绝对应力,导致石墨烯层的部分折叠。对装配式电容器结构的电气测试表明,尽管有孔和多层贴片,石墨烯层的电气性能没有受到影响。 ——文章发布于2017年11月2日