《Marposs发布了M62 Flex手动齿轮测量仪降低损坏零件的风险》

  • 来源专题:数控机床与工业机器人
  • 编译者: 杨芳
  • 发布时间:2018-11-20
  • Marposs已经为生产现场发布了M62 Flex手动台系统,该系统提供了测量不同直径齿轮的灵活性,无需再机械加工。在30度角上使用通用“Vee”消除了使用ID对中柱(或鼻梁架)定位每个测量零件的需要,减少了设置时间。

    该公司表示,这种测量仪采用伺服驱动的执行器,是第一种集成了“软接触”技术的智能测量仪。软触摸技术解决了绿色零件和主零件可能被测量触点损坏的问题。M62软触摸技术采用了一种软件程序,通过该程序,测量组能够以受控的低作用力以速度模式接近齿轮表面,同时监控位置误差,从而更好地控制过程并避免损坏。

    M62 Flex可检测外径为30至180 mm、高度为15至40 mm的奇数或偶数齿斜齿轮和正齿轮,以及1至4个模块。它有机械转台,每个转台最多可放置12个触点,适用于检测DOB ( MDK ),大直径和小直径。

  • 原文来源:https://www.mmsonline.com/products/manual-gear-gage-reduces-risk-of-damaging-part
相关报告
  • 《新型金属零件探伤法能降低检测成本》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2020-06-03
    • 俄罗斯托木斯克理工大学研发出金属零件自动化接触式检测方法,大大降低了检测成本。研究人员已为这种新的检测方法申请了专利。   工业自动化超声波控制零部件质量的方法分为两个步骤:被检工件浸入水或其他浸没液中,之后通过液体接头或喷流水柱实现耦合。托木斯克理工大学无损控制国际科学教育实验室主任德米特里·谢德涅夫表示,他们提出了替代方案:自动化接触式检测方法,使用单通道超声波探伤仪,只需使用少量液体与被检对象接触就可以实现有效检测。   谢德涅夫:“我们使用的设备更简单,作用与研究人体的超声波设备类似。它还能够对复杂形状的大型被检工件实现自动化控制。为此,我们研制出了耐磨和可靠的结构,可以保证进行稳定的声波接触和与自动化控制台配合使用。”   他们同时开发出一种防腐材料,它能与被检对象表面形成牢固的接触点。   研究人员研发的原型机已成功地通过了认证,并展示出与工业领域广泛使用的接触式超声波探伤仪相同的水平。他们计划未来建造相似设备的样机,里面会使用多元件矩阵超声光栅。
  • 《日本产业技术综合研究所(AIST)开发了可以精确测量工业机械零件形状的新技术》

    • 来源专题:计量基标准与精密测量
    • 编译者:张宇
    • 发布时间:2024-10-11
    • 近日,研究员渡边栗仁、研究组组长佐藤修、松崎和也、高级研究员宇岛麻理子、副研究部余一渡边司和日本产业技术综合研究所(AIST)名誉研究员 Toshiyuki Takatsuji 共同开发了一种可以精确测量工业机械零件弯曲形状参数的技术。 一些工业机械零件需要以微米级的精度进行加工。例如,在发电机和引擎中使用的涡轮叶片,如果存在制造误差,即使是与设计形状最微小的偏差,它不仅会影响发电效率和旋转效率,而且可能成为运行时故障的原因。 因此,需要使用三维坐标测量机(Coordinate Measuring Machine; CMM)精密评估成型零件的形状。然而,当使用接触式CMM测量具有毫米以下曲率半径的曲面形状时,由于使用半径约为 1 毫米的有限尺寸的探针球进行测量的缘故,可能会出现几微米的误差。 现在研究人员开发了一种技术,通过将图像处理中的噪声去除和用于表面粗糙度测量的形态学处理方法应用于接触式CMM测量,将测量的变异性降低到亚微米级。此外,我们将这项技术应用于涡轮叶片的断面形状测量,并证实了测量变异性的降低。预计这将提高工业机械零件形状评估的可靠性,并有助于保证零件加工质量的精度和安全性等。 一些工业机械零件的形状会影响工业机械的整体性能。特别是小型零件,往往需要以微米级的精度进行加工。例如,涡轮叶片不仅表面需要光滑,而且边缘的形状也会极大地影响通过涡轮机的气体流动。 如果与理想设计形状的偏差过大,气体的流动就会受到干扰,不仅会降低涡轮的发电效率和旋转效率,还可能引起叶片损坏等问题。因此,工业机械零件的形状评估对于保证以安全性为基础的工业机械性能至关重要。 对于工业机械零件的形状评估,通常使用CMM(坐标测量机)。特别是接触式CMM因其高精度和能够测量复杂形状而被广泛使用。然而,如果评估对象包含曲率半径较小的形状,传统方法可能会错误地估计接触式 CMM 的探针球半径校正方向,导致测量变异性达到几微米,从而得到与实际形状不符的测量结果。为了确保工业机械的安全性,必须评估加工精度是否满足要求。因此,由于测量值的变化,即使实际上是符合的形状也可能被评估为不符合,这可能会导致不必要的成本增加。 AIST一直致力于确保工业机械零件等三维形状测量的准确性,并已经开发了评估齿轮形状测量精度的方法和评估3D打印机成型精度的方法。此外,近年来,随随着汽车产业质量管理系统标准IATF16949的发布,对工业机械零件的质量要求变得越来越严格。因此,研究所扩大了测量对象,包括涡轮叶片等各种各样的工业机械零件,并一直在推进技术开发以提高形状测量的可靠性。 为了确保工业机械零件的加工精度,需要使用接触式 CMM 进行高精度地形状评估。 特别是曲率半径小的曲面形状变化很大,因此需要以密集的间隔进行测量。 在使用接触式CMM进行测量时,会获取探针球接触被测物时的中心位置。 在传统方法中,通过计算垂直于连接相邻探针球中心位置的直线或平面的方向来估计探针球半径需要校正的方向,并在该方向上进行探针半径校正。然而,由于接触式三坐标测量机的机械误差导致采集的探针球的中心位置包含亚微米级的噪声,相邻探针球中心位置构成的直线会倾斜,补偿探针半径的方向也会偏移,导致测量偏差可能会达到几微米。 此时,测量曲率半径为几毫米或更小的曲面形状的间隔越细密,相邻探针球中心位置形成的直线偏差就越大。 因此,AIST开发了一种方法,将图像处理和表面粗糙度测量中使用的形态学处理应用于接触式CMM的测量值,并修正探针半径。在形态学处理中,通过向图像数据中添加或删减某些特定形状(例如圆形),进行去除噪声或强调轮廓的处理。在本研究中,假设探针球是一个完美的圆,研究人员通过计算从探针球中心位置生成的与圆形形状相切的曲线来估计被测物体的形状。新方法与传统方法的不同之处在于,它消除了在探针球通过的区域内需要进行探针半径校正的步骤,从而减少了测量数据的误差。 此次开发的接触式 CMM 测量的探头半径校正方法,除了用于涡轮叶片之外,还可以用于工业机械部件的形状评估。为了实现更精确的零部件形状评估,研究人员将进一步拓展该项目的研究成果,假设探针球不是一个完美的圆,并将探针球的实际形状纳入计算中,以进一步提高弯曲形状的测量精度。 这项研究成果的详细说明已于2024年9月11日在《Precision Engineering》上在线发表。(DOI:10.1016/j.precisioneng.2024.09.009)