《Cell子刊:与病毒赛跑——疫苗动态更新中的定量生物学策略》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-08-03
  • 中国科学院深圳先进技术研究院、香港大学与贝湾生物科技有限公司合作,在 Cell 子刊 Cell Host & Microbe 上发表了题为:Rational design of booster vaccine strain against COVID-19 based on antigenic distance 的研究论文。

     

    该研究提出了疫苗动态更新的定量生物学策略,发现接种两针基于始祖毒株的疫苗之后,接种基于非典病毒的疫苗可以提供更为长效广谱的保护,并提出“抗原场(Antigenic Field)”理论以更好地理解和定量人体免疫系统与外来抗原之间的相互作用(免疫反应)。

     

    在该工作中,研究团队通过定量建模和理性设计开发了一种可用于疫苗动态更新研究的新型策略,将定量建模应用在新冠病毒逃逸分析中,提出“抗原场”理论,为病毒疫苗开发等提供重要思路。

    研究团队首先根据已有的中和数据和测序数据进定量建模,构建了“抗原距离”模型用来衡量不同突变株之间的免疫逃逸。针对不同毒株的抗原,人体会产生不同的血清;反之,人体在中和不同毒株时,其中和能力也有不同。通过不同血清和不同的毒株的交叉中和,可以最终测定处不同的毒株之间的抗原距离,并通过数据降维绘制抗原地图(图1)。

    通过这一工具,研究团队绘制了新冠的抗原地图,并预测了采用不同毒株的作为免疫加强针的保护范围,包括了新冠始祖毒株(Ancestral SARS-CoV-2)、新冠德尔塔毒株(Delta)、新冠奥密克戎毒株(Omicron)、非典冠状病毒(SARS-CoV-1)和中东呼吸综合征冠状病毒(MERS-CoV)在内的候选毒株。

    模型结果显示,非典冠状病毒(SARS-CoV-1)作为疫苗株有望提供更广的保护力范围。而德尔塔毒株(Delta)作为疫苗株虽然不及非典冠状病毒(SARS-CoV-1)的效果,但仍优于新冠奥密克戎毒株(Omicron)。

    研究者首先通过人类的血清样本进行验证。一共招募了6组不同的志愿者进行比较,包括:1)接种了两剂mRNA疫苗的志愿者;2)只感染过新冠始祖毒株的志愿者;3)接种了两剂mRNA疫苗随后突破性感染Delta的志愿者;4)只感染Delta的志愿者;5)接种了两剂mRNA疫苗随后突破性感染Omicron的志愿者;6)只感染Omicron的志愿者。其中第3组的志愿者的数据报告展现出更广的中和能力,其血清对新冠始祖毒株、Delta、Omicron的假病毒中和抗体滴度均表现较好,这初步证明了模型的准确性。

    随后,研究团队在小鼠模型中进行了进一步验证之前的模型。首先给小鼠接种了两剂mRNA疫苗,随后接种不同毒株作为疫苗株。小鼠的血清学结果显示,非典冠状病毒(SARS-CoV-1)疫苗株在中和抗体水平和特异性抗体水平方面均优于其他候选疫苗。在活病毒挑战试验中,非典冠状病毒疫苗株也能提供更好的保护。

    从抗原距离到抗原场

    在该论文的最后,研究团队提出了一个新概念——抗原场,以更好地理解和定量人体免疫系统与外来抗原之间的相互作用(免疫反应)。这是一个与“电场”类似的概念,“抗原场”是免疫空间中存在着的基本相互作用。“抗原场”是一个标量场,具有以下特点:

    1)感染或接种某一抗原会产生“抗原场”。这种抗原场在“激发”之后,可以“排斥”后面试图进入该场同一抗原,或与该抗原在抗原距离上较近的抗原,“抗原场”的强度与抗原的免疫原性正相关,这种“排斥”就是免疫保护,后进入的抗原与“激发”抗原的之间的抗原距离越近,则“排斥”的强度越大,即免疫反应越强。

    2)“抗原场”的叠加是非线性的。在前一个抗原“激发”了免疫场之后,后进入的抗原仍可以“激发”新的抗原场。如果前后两个抗原之间抗原距离较近,那么新的抗原被移入一个已存在的“抗原场”需要克服已存在的“抗原场”的“排斥”强度,然后才能产生它自己的“抗原场”;否则只是加强了已存在的“抗原场”。

    3)这实际上可用于解释免疫印记现象。免疫印记(immune imprinting),也称为原始抗原痕迹,这是一种免疫记忆唤醒使免疫反应偏向于先前遇到的抗原的现象,尤其发生在反复暴露于同一或类似抗原时。在开发新冠疫苗加强针时要尽量避免或者客服这种免疫印记。新的抗原接种是否能克服由之前抗原产生的免疫印迹,取决于新旧抗原之间的“抗原距离”。

    4)不同的疫苗接种策略将产生不同的“抗原场”。因此,优化的疫苗接种策略需要确定一系列能够产生具有最大覆盖面和强度的“抗原场”的抗原。“抗原场”的强度也会随着时间而衰减,用“抗原场”的语言可以更全面地描述疫苗有效性、交叉反应性和持续时间。

    香港大学医学院生物医学学院黄建东教授、微生物系朱轩助理教授和中国科学院深圳先进技术研究院合成生物学研究所张宝中副研究员为该论文通讯作者。贝湾生物科技有限公司CEO胡叶凡博士、香港大学医学院博士后袁梓泰、深圳先进技术研究院博士后龚华锐、香港大学医学院博士生胡冰杰、硕士生胡景初、博士生林轩圣为论文第一作者。

  • 原文来源:https://news.bioon.com/article/2ce4e8481213.html
相关报告
  • 《Nature子刊:调控蛋白质稳态,司龙龙团队建立PROTAC减毒疫苗新策略》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-11
    • 中国科学院深圳先进技术研究院合成生物学研究所司龙龙课题组在 Nature Biotechnology 期刊发表了题为:Generation of a live attenuated influenza A vaccine by proteolysis targeting 的研究论文。 研究团队以流感病毒为模式病毒,建立了蛋白降解靶向病毒作为减毒疫苗的技术(Proteolysis-Targeting Chimeric virus vaccine,PROTAC疫苗),为疫苗开发提供了新思路。 病毒感染与传播严重危害人类健康和社会经济的发展,已引起全球的高度关注。其中,流感是由流感病毒引起的一种呼吸道传染病。流感病毒其抗原性易变,传播迅速,每年可引起季节性流行。每年流感季节性流行在全球可导致300万-500万人重症病例,29万-65万呼吸道疾病相关死亡。 疫苗是预防和控制传染病最为经济有效的手段之一。2021年 Science 将“下一代疫苗的开发”列为125个前沿科学问题之一(www.science.org/content/resource/125-questions-exploration-and-discovery)。 减毒疫苗因其在免疫效果方面具备潜在优势而成为重要发展方向之一,如流感减毒疫苗可采用更为简单、经济、无痛、且与自然感染途径一致的鼻内喷雾方式接种;可保留病毒全部或绝大部分抗原的天然结构,可诱导更广的免疫应答,包括体液免疫、呼吸道黏膜免疫、细胞免疫等;可提供交叉免疫保护作用。 蛋白质作为病毒结构组成和正常生命活动所必需的共性生命物质,为人们操控病毒进而利用病毒提供了重要切入点。基于蛋白质调控的病毒减毒策略,大致可以归纳为两个主要方面:一是抑制或阻断蛋白质合成以减少子代病毒组装所需的“原料”生产,二是加速蛋白质降解以及时将子代病毒组装所需的“原料”清除。 在本研究中,司龙龙团队构建了PROTAC病毒,旨在通过操控病毒蛋白质的降解降低病毒的复制能力,将野生型病毒减毒成为疫苗。 宿主细胞内天然存在的蛋白质降解机器“泛素-蛋白酶体系统”为PROTAC病毒疫苗的设计提供了关键生物学基础。近年来,基于泛素-蛋白酶体系统的PROTAC蛋白质靶向降解技术,已经被成功地用于开发基于化学小分子的蛋白降解剂,并成为国际科学研究热点,即研究人员设计出一种具有两个活性端的小分子化合物,一个活性端可以与需要降解的靶蛋白相结合,而另一个活性端可以与特定的E3泛素连接酶相结合,从而诱导靶蛋白的泛素化,进而被蛋白酶体降解。 在本研究中,司龙龙团队将宿主细胞蛋白质降解机器可选择性降解靶蛋白的生物学机制,成功拓展至生命体—病毒疫苗的设计构建。研究团队选择流感病毒作为模式病毒,利用宿主细胞中天然存在的蛋白质降解机器,设计可条件性操控病毒蛋白质稳定与降解的元件,工程病毒基因组,使得相应的病毒蛋白在正常细胞中被泛素-蛋白酶体系统识别而降解,导致病毒复制能力减弱,而成为潜在的疫苗;而在疫苗制备细胞中,病毒蛋白降解诱导元件会被选择性移除,使得病毒蛋白得以保留,因此PROTAC病毒在疫苗制备细胞中可以高效复制而大量制备。 根据上述设计原理,研究团队首先构建了一株PROTAC流感病毒疫苗,命名为:M1-PTD。对病毒生长曲线考察发现,M1-PTD只能在PROTAC病毒制备细胞中高效复制而得以制备,而在正常细胞中复制能力显著下降而安全。此外,免疫荧光实验结果表明,M1-PTD病毒蛋白在正常细胞中被降解;噬斑实验结果表明,M1-PTD仅在PROTAC病毒制备细胞中可以形成噬斑,而在正常细胞中不形成噬斑;细胞病变实验结果表明,M1-PTD在正常细胞中不引起明显病变。所有这些实验结果均表明M1-PTD流感病毒具备成为安全疫苗的潜力。 该团队对构建的PROTAC流感病毒的工作机理进行了验证。结果显示,M1-PTD流感病毒的蛋白在正常细胞中被降解而复制减弱,而宿主细胞蛋白酶体的抑制可以恢复M1-PTD的病毒蛋白水平和复制能力,说明PROTAC流感病毒的蛋白降解和复制减弱是泛素-蛋白酶体途径依赖的,符合设计原理。 研究团队使用小鼠、雪貂动物模型对构建成功的M1-PTD流感病毒进行了安全性评价。将M1-PTD病毒或野生型流感病毒以滴鼻的方式接种于动物,监测动物的死亡率和体重,并检测动物鼻洗液、气管、肺中的病毒滴度。结果显示,与野生型病毒相比,M1-PTD在动物体内的复制能力显著降低,且不会引起小鼠死亡或体重下降,说明其在动物体内具备安全性。 研究团队在小鼠、雪貂动物模型中对M1-PTD流感疫苗进行了免疫效果评价。结果显示,M1-PTD可以诱导广泛的免疫应答,包括体液免疫、黏膜免疫、细胞免疫应答;且 M1-PTD可以提供良好的交叉免疫保护。 该研究基于合成生物学理念,将细胞的蛋白质降解机器生物学机制拓展至生命体—病毒疫苗的设计,不仅为病毒疫苗开发提供了新思路,丰富了人类抵御病毒的疫苗技术武器库,也有助于促进细胞蛋白质降解机器基础生物学研究与疫苗研发医学转化的深度交叉融合。同时该团队指出,虽然该研究在细胞和动物模型中证明了PROTAC病毒疫苗概念的可行性,但PROTAC病毒作为疫苗的潜在应用仍需要大量的优化和探索。
  • 《尼帕病毒:流行病学,病理学,免疫生物学以及诊断,疫苗设计和控制策略的进步 - 综合评述。》

    • 来源专题:实验室生物安全
    • 编译者:苑晓梅
    • 发布时间:2019-05-13
    • Nipah(Nee-pa)病毒性疾病是由Nipah病毒(NiV)引起的人畜共患感染,该病毒属于副粘病毒科的Henipavirus属的副粘病毒。它是一种生物安全的4级病原体,由特定类型的果蝠传播,主要是Pteropus spp。这是天然水库的主人。 1998年马来西亚Kampung Sungai Nipah村首次报道了这种疾病。人与人之间的传播也在发生。据报道,南亚和东南亚其他国家也爆发了疫情。系统发育分析基于目前可获得的完整N和G基因序列肯定了NiV的两个主要进化枝的循环。来自马来西亚和柬埔寨的NiV分离株聚集在NiV-MY进化枝中,而孟加拉国和印度的分离株聚集在NiV-BD进化枝内。来自泰国的NiV分离株含有混合的序列群。在人类中,病毒导致迅速发展的严重疾病,其可能以严重的呼吸道疾病和/或致命的脑炎为特征。