《苏州纳米所王锦/胡东梅AFM:凤凰涅槃法制备柔性、可赋型耐1300℃高温陶瓷气凝胶及其阻燃绝热涂料》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-09-15
  •   阻燃、耐高温热管理材料在航空航天、建筑和日常生活中具有广泛的应用。气凝胶作为一类超低密度和超低热导率的多孔材料,在耐高温热管理材料的减重、瘦体等方面独具优势。然而高分子基气凝胶材料长期服役耐温极限一般在500℃以下,而无机氧化物等新型气凝胶,其高温下的结构稳定性、力学性能、以及密度与热导率等综合性能还待提升。此外,传统气凝胶由于极高的孔隙率导致其脆性大、难以二次加工等,因此如何实现对结构复杂的异型件进行极端高温热防护,也是有待突破的瓶颈。

      近日,中国科学院苏州纳米技术与纳米仿生研究所王锦等人设计了一种简便易行的策略来制备能够耐受1300℃高温的柔性可赋型陶瓷气凝胶。如图1所示,通过采用商品化的氧化硅气凝胶颗粒以及莫来石陶瓷纤维作为结构组份,用水溶性高分子将二者在水溶液中实现结构重排(前驱体溶液),形成类似鸟巢结构的交叉互扣的增强结构,最后定型干燥后采用明火将水性高分子祛除(凤凰涅槃法,图2),从而得到具有仿生鸟巢结构的柔性、轻质和可赋型的氧化硅-氧化铝复合陶瓷气凝胶(Fire-reborn silica-alumina hybrid ceramic aerogel, FR-SACA)。柔性氧化硅-氧化铝陶瓷杂化气凝胶(silica-alumina hybrid ceramic aerogel, SACA)密度极低,仅为0.01 g/cm3。在烧尽高分子基底后,生成了火重生的FR-SACA其密度最低为 0.007 g/cm3。此外,可将其前驱体溶液浇注到预先设计好的模具中,或直接进行刮涂可实现大规模生产。

      FR-SACAs的结构完全由陶瓷纤维搭接而成,虽然整个制备过程没有引入化学反应,但类似鸟巢的结构不仅赋予了其一定的强度,而且还具有良好的压缩回弹性,能够在80%的压缩应变下完全回弹。涅槃后的复合气凝胶在900℃范围内几乎没有任何质量损失,热导率也维持在0.04 Wm-1K-1以下(图3)。

      为了验证FR-SACAs的高温隔热性能,对不同厚度的样品进行了酒精灯火焰和丁烷火焰隔热性能研究。采用红外摄像机连续监测了火焰暴露下FR-SACAs的动态温度分布,并在FR-SACAs的正反面安装热电偶,以测量实际温度并绘制温度变化曲线。实验结果表明,当暴露在高温火焰(1300 ℃)中时,20 毫米厚的 FR-SACA 可保持稳定的隔热性能,温度降低 1179.6 ℃,比丁烷火焰温度降低 80% 以上(图4)。

      此外,本工作制备的前驱体溶液能够直接作为耐高温阻燃隔热涂料使用。如图5所示,前驱体可以直接涂覆在字母(异性结构件)上,黏附强度达160 kPa。为了研究FR-SACA隔热阻燃涂料在更大范围内的效果,研究者制备了使用该涂料的纸房子,并在真实大火中进行燃烧。结果表明,涂有气凝胶陶瓷涂料的纸屋和未受保护的纸屋同时暴露在大火中,大火持续燃烧16 秒后,未受保护的纸屋被火焰烧毁,而涂有FR-SACA涂料的纸屋则未受影响;在约105秒的整个燃烧过程中,未受保护的纸屋被烧毁并化为灰,而涂有气凝胶陶瓷涂料的纸屋仍然完好无损。

     本研究通过极为简单的纯物理过程构筑了具有轻质、柔性、耐极端高温、可赋性的陶瓷气凝胶及其涂料,制备方法有望连续化批量制备,可广泛应用于极端环境下的热管理应用。相关工作以Flexible and Transformable Ceramic Aerogels via a Fire-Reborn Strategy for Thermal Superinsulation in Extreme Conditions为题发表在Advanced Functional Materials上。论文第一作者为中国科学院苏州纳米技术与纳米仿生研究所轻量化实验室硕士生程滢颖,通讯作者为中国科学院苏州纳米技术与纳米仿生研究所胡东梅项目研究员和王锦项目研究员。本工作得到苏州市科技局基础研究试点项目和中国科学院青促会支持。

  • 原文来源:http://www.sinano.cas.cn/news/kyjz/202309/t20230914_6880237.html;http://www.sinano.cas.cn/news/kyjz/202309/t20230914_6880237.html
相关报告
  • 《苏州纳米所制备出超柔性氮化硼纳米带气凝胶》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-04-09
    • 气凝胶,被誉为改变世界的新材料,具有孔隙率高、比表面积大、密度低、绝热性能好等优异理化性质,在热 / 声 / 电绝缘、催化剂 / 药物载体、星际尘埃收集、环境修复、能源与传感等领域具有重要应用前景。然而,其自身力学缺陷,如强度弱、易脆、变形能力差等弊端,尤其是较宽温度范围内抵抗不同载荷冲击能力,成为气凝胶获得实际应用的最重要障碍之一。 针对上述问题,中国科学院苏州纳米技术与纳米仿生研究所研究员张学同领导的气凝胶团队与德国科学家合作,将实验设计与理论计算相结合,通过溶剂组分调控氢键网络,寻找到一条简便、高效、绿色的合成路径,成功制备得到超柔性氮化硼纳米带气凝胶,并实现了气凝胶材料在很宽温度范围内(-196°C~1000°C)及不同载荷冲击形式(压缩、弯曲、扭曲、剪切等)下的柔性保持。 研究表明,该氮化硼气凝胶由超薄( ~3.2 nm )、大长径比(几百)、多孔带状纳米结构相互缠绕、搭接而成,表现出超轻( ~15 mg cm -3 )、热绝缘( ~0.035 W/mK )、高比表面积( ~920 m 2 g -1 )及优异的力学性能。该气凝胶在多次循环压缩、扭曲、弯曲、剪切等不同载荷下,可保持结构不被破坏、且可快速恢复至原有形状。当该气凝胶被浸泡在液氮中,其压缩 - 回弹性能仍能够很好保持。进一步地,当氮化硼气凝胶被放置于酒精灯火焰或高于 1000 ° C 的管式炉(空气氛围)时,其稳定的力学柔性仍被完好保留,且可承受不同载荷的冲击。上述氮化硼气凝胶的超柔性展示如下图所示。 该工作以 Boron Nitride Aerogels with Super-Flexibility Ranging from Liquid Nitrogen Temperature to 1000°C 为题,发表在国际期刊《先进功能材料》( Advanced Functional Materials , 2019, 29,1900188)上。
  • 《苏州纳米所成功制备柔性、自清洁的石墨烯气凝胶智能相变纤维》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2018-06-20
    • 智能纤维,通常指可感知环境变化或刺激(如光、电、温度、湿度、pH、机械等)并能够做出反应的纤维,是智能可穿戴织物中重要的基本组成单元。智能纤维可通过智能织物形式,整合到臂带、袖套、服装、头盔、腰带等部位之中,并作为可穿戴传感器、制动器、能源器件、调温织物及加热器等功能器件的核心单元应用于柔性可穿戴智能系统中。然而,目前大多数织物纤维以天然高分子或合成高分子为主。这些高分子具有本征的热绝缘及电绝缘性能,使其难以与微型化电路进行有机整合,因而不仅限制织物纤维在传统电子器件中的应用,还束缚着新型可穿戴电子器件及智能机器人的发展。此外,如何实现智能纤维在面对复杂环境及人机交互中多重刺激响应的功能集成,依旧是一个重大挑战,也是未来新型多功能智能可穿戴系统发展的重要机遇。 基于智能纤维多重刺激响应的功能集成这一需求,中国科学院气凝胶团队将石墨烯气凝胶纤维、相变材料及超疏水涂层巧妙复合,得到一种柔性、自清洁的石墨烯气凝胶智能相变纤维,实现了复合纤维的能源转换与存储、自清洁、智能调温、加热等多重刺激响应功能于一身。具体制备工艺如下:首先通过湿法纺丝工艺,将氧化石墨烯液晶纺入特定凝固浴中,经化学还原-超临界干燥等技术手段制备得到具有规整、连续、多孔的石墨烯气凝胶纤维;然后通过浸渍填充,将有机相变材料(如石蜡、聚乙二醇、高级脂肪酸等)引入到气凝胶纤维的多孔网络结构中,获得石墨烯气凝胶相变复合纤维;最后在复合纤维上包裹氟碳疏水涂层,获得具有自清洁功能、多重刺激响应行为的柔性石墨烯气凝胶智能纤维。 研究表明,这种新型的智能纤维具有可调的相变焓值(0-186 J/g)、优异的力学/电学性能、自清洁及多重刺激响应(光、电、温度)的热能转换与存储/释放功能,且纤维可被加捻、编织。针对单根纤维、纤维束及织物等形式,分析并探究了复杂环境下的刺激响应行为:当纤维弯曲或打结时,纤维的电热响应行为不受影响,当纤维集结成束时,纤维之间发生热交换,能够减少纤维向环境的热流失,从而表现出更为快速的电热响应及更高的响应温度;纤维织物在室温及低温环境下均具有光-热响应行为,且随着纤维织物的密集程度的增加,光热响应具有更快、更高的温度响应。进一步地,通过热电偶及数据记录仪,详细分析了单根纤维、纤维织物的电热、光热响应历程,并详细研究了纤维种类(不同相变材料的纤维混编织物)、纤维织物的密集程度、外部环境(温度、湿度及应力)对热能捕获及释放的影响,实现智能织物的多温度区间的热能存储、释放及调温功能(如图1所示)。 图1 、石墨烯气凝胶智能纤维的多重刺激响应示意图(a)、其编织图案的光学照片(b, c,)与光-热响应时的红外照片(b1, c1)、及其智能织物(d内插图)在光/电刺激响应下的热能转换与存储/释放的历程(d)。 通过石墨烯气凝胶纤维、相变材料及氟碳树脂巧妙复合得到的石墨烯气凝胶智能纤维实现了多重刺激响应下的多功能集成,且可再现于纤维加捻而成的纱线及编织成的织物之中,在新一代智能可穿戴织物及便携式电子器件领域具有广阔应用前景。相关研究成果以“Multiresponsive Graphene-Aerogel–Directed Phase-Change Smart Fibers”为题,已在线发表在国际著名杂志Advanced Materials(2018, 30, DOI: 10.1002/adma.201801754)上。 博士生李广勇(北京理工大学与中国科学院苏州纳米所联合培养)为论文第一作者,张学同研究员为论文通讯作者,合作者包括澳门大学洪果教授,英国伦敦大学学院宋文辉教授。该论文工作在国家重点研发计划(2016YFA0203301)、国家自然科学基金(51572285)、英国牛顿高级学者基金(NA170184)和江苏省自然科学基金(BK20170428)的共同资助下完成。