2024年7月19日,迈阿密大学Antoni Barrientos、哈佛医学院Silvi Rouskin、迈阿密大学Flavia Fontanesi共同通讯在Science发表题为The human mitochondrial mRNA structurome reveals mechanisms of gene expression的文章,揭示了人类细胞内线粒体信使RNA(mt mRNA)的复杂折叠模式,揭示了线粒体基因表达中一个以前未知的调控层。
该研究采用了一种名为mitoDMS-MaPseq(mitochondrial dimethyl sulfate mutational profiling with sequencing)的新技术。这种方法使研究人员能够绘制完整线粒体内mt mRNA的二级结构,为这些结构如何影响基因表达提供了前所未有的见解。这些发现挑战了关于mt mRNA折叠的传统观点,作者表明这些分子比以前认为的更具活力,对细胞线索的反应也更灵敏。这项研究的一个关键发现是鉴定了mRNA程序性翻译暂停,这一机制似乎对合成具有多个跨膜结构域的疏水蛋白特别重要。这种暂停允许这些蛋白质正确折叠,确保它们能够有效地整合到线粒体膜中。研究人员还发现了程序化核糖体移码,一个在单个双顺反子转录本内协调两个重叠的开放阅读框翻译的过程,的证据。这种机制对于维持ATP合酶复合物中蛋白质亚基的化学计量平衡至关重要。
该研究的结果还强调了LRPPRC的作用,指出LRPPRC是一种对mt mRNA稳定性、多聚腺苷酸化和翻译至关重要的蛋白质。在缺乏LRPPRC的情况下,mt mRNA结构体经历了显著的重塑,这表明该蛋白在维持mt mRNA结构的完整性方面起着关键作用。研究人员推测,LRPPRC可能作为一种保持酶,有助于维持mt mRNA的折叠状态,并促进其高效翻译。作者还揭示了mt mRNA存在于一个动态的替代构象集合中。使用一种名为DREEM(detection of RNA folding ensembles using expectation-maximization)的聚类算法,研究人员能够识别每个转录物采用的共存替代构象,捕捉到结构整合中mt mRNA折叠的动态性质。这一发现强调了在研究线粒体基因表达时考虑可能的RNA结构的全谱的重要性。
总之,此研究为线粒体基因表达的研究开辟了一条新的途径,提供了线粒体mRNA折叠模式的全面图谱,并揭示了线粒体蛋白合成调控的机制。这些发现不仅加深了我们对线粒体生物学的理解,而且为线粒体疾病的治疗干预提供了潜在的靶点。随着我们继续解开线粒体功能的复杂性,这项研究提供的见解无疑将为线粒体遗传学领域的未来发现奠定基础。