中国科学院深圳先进技术研究院杜学敏副研究员团队研发出一种离子交联型水凝胶,首次报道了通过生物兼容性离子(Na /Ca2 )触发水凝胶可控三维形变,并揭示了其内外反转三维可逆形变机制。相关研究结果以论文“Inside-Out 3D Reversible Ion-Triggered Shape-Morphing Hydrogels”(离子触发内外反转三维可逆形变水凝胶)在Science合作期刊Research上在线发表(Research, 2019, DOI: 10.1155/2019/6398296)。
【成果简介】
近年来,仿生可控三维形变材料在组织工程与人工器官等医学领域应用广泛,但传统材料要么欠缺可控形变能力,要么刺激调控手段面临安全性挑战,由此极大限制了传统生物材料医学应用。如何成功实现传统生物材料的可控三维形变,及采用生物相容性手段调控形变,仍是材料生物学应用面临的一大难题。
为解决该挑战,杜学敏研究团队基于前期在材料可控形变设计经验(Advanced Materials, 2017, 29, 1702231;Advanced Materials Technologies, 2017, 2, 1700120;Advanced Functional Materials, 2018, 28, 1801027),创新性地仿生自然中触之形变植物的构造原理,通过表面定向排列微阵列结构与自上而下的梯度交联设计结合,成功实现钙离子交联的海藻酸钠水凝胶可控三维形变。将所得螺旋形水凝胶置于0.1 M NaCl溶液中,发现三维螺旋形会逐渐变形为二维平面结构,最终结构进一步反转形成微通道朝外的反向三维螺旋结构。当反转形变后的三维螺旋结构重新浸泡在0.1 M CaCl2溶液中时,样品会恢复到微通道朝内的初始三维螺旋结构。非常有意思的是,将三维形变水凝胶置于NaCl与CaCl2的混合溶液中,通过调节溶液中Na /Ca2 浓度比例,还可成功“冻结”海藻酸钠水凝胶三维动态形变过程中的瞬态形状。而且,通过耦合多种不同取向微阵列结构,成功实现了类似DNA分子的双螺旋结构,及自然界中各种复杂花的三维形状,还成功模拟了仿生花在离子溶液中动态绽放与闭合。