《储成才研究组发现控制水稻氮高效、高产与早熟关键基因》

  • 来源专题:人类遗传资源和特殊生物资源流失
  • 编译者: yanyf@mail.las.ac.cn
  • 发布时间:2018-12-01
  • 氮是植物需求量最大的矿质元素,也是促进作物增产的最重要因素之一。据统计,全世界每年施用氮肥超过1.2亿吨。氮肥大量施用不仅增加了农业生产成本,更为重要的是导致了包括气候变化、土壤酸化及水体富营养化等一系列环境灾难。此外,大量施用氮肥导致的作物“贪青晚熟”(开花和成熟延迟)现象,不仅影响(双季或三季中)后茬作物的播种,在高纬度地区,还可能由于后期温度较低而影响作物灌浆,导致作物产量的大幅降低。目前,主要作物诸如水稻、小麦等的氮肥利用效率低于40%,因此,如何提高作物氮肥利用效率增加作物产量,同时避免“贪青晚熟”一直是作物品种改良研究中的重要课题。

    水稻是世界上最重要的粮食作物,全球超过1/2的人口以稻米为主食,其中约90%水稻在亚洲种植消费。亚洲栽培稻 (Oryza sativa L.) 分为两个主要亚种——粳稻 (Japonica) 与籼稻 (Indica),它们在形态、发育与生理等方面都表现出不同的特征,且籼稻氮肥利用效率显著高于粳稻。

    中国科学院遗传与发育生物学研究所储成才研究组研究表明,籼稻品种利用硝酸盐的能力显著高于粳稻品种,并证明编码硝酸盐转运蛋白基因——OsNRT1.1B的单碱基变异是导致粳稻与籼稻间氮肥利用效率差异的重要原因 (Hu et al., Nature Genetics, 2015)。OsNRT1.1B与拟南芥中的硝酸盐感应器(transceptor)AtNRT1.1具有保守的生物学功能。有意思的是,水稻基因组中存在三个AtNRT1.1同源蛋白,依据序列相似性高低依次命名为OsNRT1.1A、OsNRT1.1B和OsNRT1.1C。亚细胞定位分析显示,OsNRT1.1B主要定位于细胞膜,而OsNRT1.1A则主要定位于液泡膜,表明OsNRT1.1A和OsNRT1.1B存在明显的功能分化。更为有意思的是,OsNRT1.1B受硝酸盐诱导,而OsNRT1.1A受铵盐诱导。进一步的功能研究表明,OsNRT1.1B主要参与水稻对外界硝酸盐刺激的初级应答反应,而OsNRT1.1A则参与水稻应对胞内硝酸盐及铵盐利用的基础代谢功能的调节。植物利用氮源主要有硝态氮和铵态氮两种形式。水稻作为水生植物,铵态氮是其主要利用方式,OsNRT1.1A的这种功能分化意味着其对水稻的环境适应性极其重要。

    水稻中存在数十个硝酸盐转运蛋白,导致其存在相当程度的功能冗余,大多编码硝酸盐转运蛋白的突变体均没有明显的表型差异,然而,OsNRT1.1A的突变导致水稻植株矮化,开花期延长,产量降低。而过量表达OsNRT1.1A在不同水稻品种及在不同氮肥条件下均可显著提高水稻生物量和产量,并能大幅缩短水稻成熟时间。在北京、长沙及海南等多年多点的田间试验表明,OsNRT1.1A过表达植株在高氮和低氮条件下均表现出显著的增产效果。尤其在低氮条件下,OsNRT1.1A过表达株系小区产量以及氮利用效率最高可提高至60%,而且在高氮条件下相较于对照品种可提早开花2周以上,从而有效缩短了水稻成熟时间。在拟南芥中过量表达OsNRT1.1A也能使拟南芥开花大幅提前,并显著增加拟南芥生物量和种子量。这些结果证明,该项研究成果为培育兼具高产与早熟水稻品种,克服农业生产中高肥导致的“贪青晚熟”问题提供了解决方案,并有可能延伸到其他作物品种,具有巨大的应用潜力。

    该项研究成果于2018年2月23日发表在Plant Cell(doi: 10.1105/tpc.17.00809)杂志上。3月1日Plant Cell刊发了题为“The Real Yield Deal? Nitrate Transporter Expression Boosts Yield and Accelerates Maturation”的评论文章,对这一成果给予了高度评价,认为“虽然现有结果尚难保证通过这一基因能够解决世界饥饿问题。然而,该基因对提高氮利用率、加快成熟和增加产量的协同改良结果表明,该基因应该是人们寻找产量真正决定因子研究中值得关注的!”(The promising but preliminary results described here can’t promise that this transporter will provide the solution to world hunger. However, the combination of improved N use, accelerated maturity, and improved yield indicate that this one is worth watching in the search for the real yield deal.)

    王威博士和胡斌副研究员为论文共同第一作者。本项目得到国家科技部和中国科学院分子模块设计育种创新体系先导科技专项资助。

相关报告
  • 《科学家发现控制苹果质量的基因组》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:郝心宁
    • 发布时间:2017-11-28
    • 由法国农业科学院(INRA)领导的国际联盟,共涉及法国、意大利、德国、荷兰和南非5个国家的科学家,近期,他们结合最新的DNA测序技术与经典测绘方法,发现了控制苹果质量的基因组。该项研究成果为科学家们提供了前所未有的树种基因组成分和进化新观点,为创造新品种提供了新视角。成果发表在2017年6月5日的《自然遗传学》(Nature Genetics)期刊上。 苹果是世界上消费最多的水果之一,全球每年的苹果产量高达8,460万吨。新获取的高质量基因组可以帮助科研人员高效地选择新品种,基因学和表观遗传学研究对识别关键基因,例如水果大小、颜色或抗病性相关的基因,起到了重要作用。根据高密度标记的遗传图谱,可以在代表苹果17条染色体的17个模拟分子中组装拼接该基因组。该基因组组装在280个基因片段中,长度为649.3Mb,包含了42140个基因。 这个新的基因组可以帮助科学家识别2100万年前在苹果基因组中发生的重要基因重排现象。这些变化可能是由于哈萨克斯坦,苹果的起源地天山山脉的出现而产生。这些地质和环境事件可能促成了苹果和梨共同祖先的对比演变。 利用这一超高质量的基因组,科学家能够开展侧重独立DNA序列信息传递的表观遗传学研究,通过表观遗传学研究果实发育。该基因组将成为苹果育种研究人员的重要工具,帮助他们获取基因组进化与调控的知识。这也有助于加快筛选更具抗药性的新品种,减少农药使用,提高苹果质量或使这些品种适应特定环境和气候变化。 (编译 郝心宁)
  • 《日本科研团队发现4种可改良水稻的新型基因》

    • 来源专题:农业科技前沿与政策咨询快报
    • 编译者:梁晓贺
    • 发布时间:2017-11-27
    • 基于植物遗传学的选择性作物改良育种,对于满足世界不断增长的人口之粮食需求非常重要。寻找高产作物基因并分析高产基因的独特之处是培育高产作物新品种的关键。截至目前,作物基因分析主要是基于数量性状基因座(QTL)分析,但是这种方法需要花费长时间来培育实验样本。另一种方法是全基因组关联分析(GWAS),该方法经常被用来分析人类基因,通过研究多个现存个体的数据实现在短时间内分析基因。这种方法也用来分析很多植物品种,但取得成功的案例还很少。日本的一个研究团队在采用人类基因分析技术,很快发现了水稻中的4种新型基因。该研究成果于2016年6月21日(日本标准时间)在《自然遗传学》(Nature Genetics)电子版上发表,将对作物育种乃至整个农业生产带来重要影响,有可能缓解人口不断增长带来的粮食紧缺问题。 该日本研究团队为了用全基因组关联分析法取得成效,将目标范围缩小到176个日本水稻品种,包括神户大学多年来制作清酒时一直培育的86个品种。选用下一代测序技术,确立了每一个水稻品种的整个序列,发现了493,881个多型性DNA。基于这些研究结果,对每种特性都进行全基因组关联分析,在一组12个水稻染色体中快速发现4种基因。1号染色体包含的基因决定水稻开花日期。4号染色体包含的基因决定每穗粒数,剑叶宽度以及每穗实粒数。8号染色体影响芒长,从而影响收成。11号染色体内的基因决定开花日期,株高和穗长。 该实验的成功有助于发现其他动植物的基因,并有可能帮助解决人口不断增长带来的粮食紧缺问题。神户大学培育的日本水稻品种以及该研究使用的水稻品种可作为珍贵的基因资源,帮助发现其他基因,培育新的作物品种。 (编译 梁晓贺)