《受宣纸启发,科研人员发明新型柔性显示膜材料》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2021-12-28
  • 记者从中国科学技术大学获悉,该校俞书宏院士团队特任副研究员管庆方等,通过对传统宣纸的详细结构表征,探究了其高强度高韧性的微观机理,并且受宣纸制造工艺和结构的启发,研制出了一种具有多尺度结构的高雾度透明薄膜,是柔性透明电子器件基底材料的理想选择。相关研究日前成果发表于《ACS材料通信》上。

    造纸技术是中国古代四大发明之一,其中宣纸是我国保存高级档案和史料的最佳用纸,是中华民族宝贵的文化遗产,迄今已有一千五百多年历史的宣纸制作工艺也被列为世界非物质文化遗产,居文房四宝之首。

    科研人员通过研究发现,宣纸内部具有大量的纳米纤维和微米纤维相互交织,形成了微米纳米多尺度的三维网络,这种仿生多尺度结构赋予了宣纸高强度,高柔韧性的力学优势。受宣纸多尺度结构的启发,研究人员通过将微米纤维素和纤维素纳米纤维组装成多尺度结构,制备了高性能高雾度透明薄膜。这种多尺度结构赋予了薄膜高强度、高韧性、高透光率、高雾度、极佳的柔韧性和可折叠性等优异的综合性能,并且可以通过卷对卷的工艺进行连续化生产。

    由于该薄膜多尺度双网络结构通过高密度的氢键网络将应力分散在更广阔的多尺度三维网络之中,避免了应力的集中,同时实现了高强度和高柔韧性,在完全折叠后也不形成破坏性折痕,卷起后也可恢复原状。这种多尺度薄膜还具有优异的热稳定性,与广泛使用的不可持续的石油基塑料薄膜相比,在250°C下也没有明显的变化。 

    这些出色的力学、热力学与光学特性,使其成为应用于精密光学器件和柔性电子器件领域的理想薄膜材料。基于该多尺度薄膜制作的柔性近场通讯电路电子器件兼具高透明度、高雾度和优异的柔韧性,在弯曲时仍然可以准确地记录和读取信息,展示了多尺度薄膜作为柔性电子器件基底的应用潜力。

相关报告
  • 《这是一种由奇异材料制成的柔性电子产品》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2018-10-09
    • 麻省理工学院的研究人员发明了一种在氮化镓衬底上通过二维材料生长单晶氮化镓薄膜的方法。氮化镓薄膜随后被柔性基板剥离,显示出来自薄膜干涉的彩虹色。这项技术将为柔性电子器件和晶圆的再利用铺平道路。 授信人:孔伟、关桥;知识共享署名非商业无衍生品许可 如今,绝大多数计算设备都是由硅构成的,硅是地球上仅次于氧的第二大元素。硅可以在岩石、粘土、沙子和土壤中以各种形式被发现。虽然它不是地球上现存的最好的半导体材料,但它是目前最容易得到的。因此,硅是大多数电子设备中使用的主要材料,包括传感器、太阳能电池,以及计算机和智能手机中的集成电路。 现在,麻省理工学院的工程师们已经开发出一种制造超薄半导体薄膜的技术。为了演示他们的技术,研究人员制作了由砷化镓、氮化镓和氟化锂制成的柔性薄膜,这种材料比硅表现出更好的性能,但迄今为止在功能器件上的生产成本高得令人望而却步。 研究人员说,这项新技术提供了一种成本效益高的方法,可以用任何半导体元件的组合制成灵活的电子产品,比目前的硅基器件性能更好。 “我们已经开辟了一种方法,可以利用多种不同的材料系统(除了硅)来制造柔性电子产品,”1947级机械工程和材料科学与工程学系职业发展副教授金哲万(Jeehwan Kim)说。Kim设想这种技术可以用于制造低成本、高性能的设备,如柔性太阳能电池,可穿戴电脑和传感器。 今天《自然材料》杂志报道了这项新技术的细节。除了金纸的麻省理工学院的合作者包括魏,华山,Kuan俏,Yunjo Kim Kyusang Lee Doyoon李,汤姆Osadchy,理查德•莫尔纳sang hoon Bae,杨Shao-Horn,杨Yu和杰弗里•格罗斯曼与中山大学的研究人员一起,弗吉尼亚大学,德克萨斯大学达拉斯,美国海军研究实验室,俄亥俄州立大学,佐治亚理工学院。 现在你看到了,现在你看不到了 在2017年,Kim和他的同事发明了一种方法,用石墨烯制造昂贵的半导体材料的“复制品”。堆放时他们发现石墨烯的纯净,昂贵的半导体材料,如砷化镓晶片,然后流入和砷化镓堆栈的原子,原子似乎在某种程度上与底层原子层交互,如果中间石墨烯是无形的或透明的。结果,这些原子组装成底层半导体晶圆的精确的单晶模式,形成一个精确的拷贝,然后很容易从石墨烯层剥离出来。 他们称之为“远程外延”的技术,提供了一种廉价的方法来制造多个砷化镓薄膜,只需使用一个昂贵的底层晶圆。 在他们报告了第一个结果后不久,研究小组想知道他们的技术是否可以用于复制其他半导体材料。他们尝试在硅和锗(两种廉价的半导体)上应用远程外延,但发现当这些原子在石墨烯上流动时,它们无法与各自的底层相互作用。就好像以前透明的石墨烯突然变得不透明,阻止了硅原子和锗原子“看到”另一边的原子。 碰巧的是,硅和锗是元素周期表中同一组元素中的两种元素。具体来说,这两种元素属于第四组,这是一种离子中性的材料,意味着它们没有极性。 “这给了我们一个提示,”Kim说。 也许,该团队推断,原子只有在带有离子电荷的情况下,才能通过石墨烯相互作用。例如,在砷化镓的例子中,镓在界面上带负电荷,而砷带正电荷。这种电荷差异或极性可能帮助原子通过石墨烯进行相互作用,就好像石墨烯是透明的一样,并复制底层原子模式。 “我们发现通过石墨烯的相互作用是由原子的极性决定的。对于最强的离子结合材料,它们甚至可以通过三层石墨烯相互作用。“这就像两个磁铁可以吸引,即使是通过一张薄纸。” 异性相吸 研究人员利用远程外延技术复制了不同极性的半导体材料,从中性硅和锗,到微极化砷化镓,最后是高度极化的氟化锂——一种比硅更好、更贵的半导体。 他们发现,极性越大,原子间的相互作用就越强,甚至在某些情况下,通过多个石墨烯薄片。他们能生产的每一种薄膜都是有弹性的,只有几十到几百纳米厚。 研究小组发现,原子相互作用的物质也很重要。除了石墨烯外,他们还试验了一种六方氮化硼(hBN)中间层,这种材料类似于石墨烯的原子模式,具有类似于聚四氟乙烯的性质,使叠加材料在复制后很容易脱落。 然而,hBN是由相反的带电的硼和氮原子组成,它们在材料内部产生极性。在他们的实验中,研究人员发现,任何原子在hBN流动,即使他们高度极化,完全无法与他们潜在的晶片,这表明极性的兴趣和中间材料的原子决定原子相互作用,形成最初的半导体晶片的副本。 “现在我们真正明白了通过石墨烯存在原子相互作用的规则,”Kim说。 他说,有了这种新的认识,研究人员现在只需看看周期表,就能选出两个电荷相反的元素。一旦他们获得或制造了一个由相同元件制成的主晶圆,他们就可以应用团队的远程外延技术来制造多个完全相同的原始晶圆。 “人们大多使用硅片,因为它们很便宜,”Kim说。“现在我们的方法开启了一种使用高性能非硅材料的途径。你可以只买一个昂贵的晶圆片,然后一遍又一遍地复制,然后重复使用晶圆片。现在这种技术的材料库完全扩展了" Kim设想,远程外延技术现在可以用以前各种奇异的半导体材料制成超薄的柔性薄膜——只要这种材料是由具有一定极性的原子制成的。这种超薄薄膜有可能一层一层地堆积起来,生产出微型、灵活的多功能设备,比如可穿戴传感器、柔性太阳能电池,甚至在遥远的未来,“可以附着在皮肤上的手机”。 “在智能城市,我们可能想要把小型计算机放在任何地方,我们需要低功耗、高灵敏度的计算和传感设备,这些设备由更好的材料制成,”Kim说。“这项研究开启了通往这些设备的道路。” 这项研究部分得到了国防高级研究计划局、能源部、空军研究实验室、LG电子、爱茉莉太平洋、林研究和模拟设备的支持。 ——文章发布于2018年10月8日
  • 《致命蜘蛛独特的织网技术启发新型高强度材料发展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:姜山
    • 发布时间:2017-03-20
    • 牛津大学动物学系的科学家和弗吉尼亚威廉玛丽学院应用科学系的一个团队,通过对美国棕色遁蛛的观察,发现其丝的独特的薄且扁特性可能是其较其他蜘蛛丝强度更高的原因。由此启发,该团队通过计算机模拟将该技术应用于合成纤维,测试并证明添加甚至单个的环即可以显着增强材料的强度。该发现为高强度纤维技术开辟了新领域。 一个英美合作的新出版物发现,棕色遁蛛使用独特的微循环技术,使他们的织的网比任何其他蜘蛛都要强。 作为世界上最可怕且有毒的蜘蛛之一,美国棕色遁蛛长期以它的标志性坏死毒液,以及它的异常高强度的丝闻名于世。现在,新的研究提供了蜘蛛如何使它的丝异常强韧的一个解释。 研究人员提出,如果应用于合成材料,该技术可以激发科学发展,并改进太空旅行中使用的冲击吸收结构。 这项研究由牛津大学动物学系的科学家和弗吉尼亚威廉玛丽学院应用科学系的一个团队合作,现发表在“Material Horizons”杂志上。 他们对棕色遁蛛的旋转行为的监视显示了蜘蛛如何以及在什么程度上加强了它所制造的丝。 通过观察蜘蛛,团队发现,不像其他蜘蛛生产圆形丝带,棕色遁蛛的丝薄而扁。这种结构差异是丝线强度的关键,提供了防止过早断裂和承受纺丝过程中产生的结节所需的灵活性,使得每股丝线具有更高的强度。 威廉玛丽学院的Hannes Schniepp教授解释说:“可增加强度的环的理论已经被证实,但是向合成纤维添加环似乎会导致纤维过早失效。观察的棕色遁蛛提供了突破性的解决方案;其不像所有的蜘蛛,不是圆形的,而是一种薄的纳米尺度扁平带,带状形状增加了防止过早失效所需的灵活性,使得所有微环可以为股线提供更高的强度。 通过使用计算机模拟将该技术应用于合成纤维,团队能够测试并证明添加甚至单个环可以显着增强材料的强度。 William&Mary的博士生Sean Koebley补充道:“我们能够证明,添加一个环可以显着提高简单合成胶带的韧性。我们受棕色遁蛛启发的观察为纤维技术开辟了新的领域。 牛津大学动物学系Fritz Vollrath教授表示:“计算机模拟表明,具有许多环的纤维比没有环的纤维强度更高。例如,碳丝可以是环状的,以使它们更韧,并因此允许它们用于新颖的冲击吸收结构中。一个示例是漂浮在外太空的碳丝的蜘蛛状网,捕获危及宇航员生命和卫星完整性的漂移的太空碎片。