《研究阐明利福霉素生物合成新机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-06-25
  • 结核病不仅有导致大量人类死亡的历史事件,而且至今仍是危害公共健康的顽固性呼吸道传染病。利福霉素类化合物是由地中海拟无枝酸菌产生的一类具有广谱抗菌作用的抗生素,对结核杆菌、麻风杆菌、链球菌、肺炎球菌等革兰氏阳性细菌,特别是耐药性金黄色葡萄球菌具有很强的拮抗作用,同时对某些革兰氏阴性细菌也有效果。由天然产物利福霉素SV或利福霉素B进行化学半合成的利福平、利福喷丁、利福布丁等药物进入了世界卫生组织的基础药物目录,作为一线抗结核药物挽救了数以万计结核病人的生命。自1957年首次发现以来,利福霉素的生物合成途径一直是生物化学家们的研究热点。尽管前期利用同位素标记和基因敲除(敲入)等方法已阐明其生物合成途径中的大部分环节,但利福霉素SV是如何转化为利福霉素B的这个关键环节却长时间困扰着科学界。

    日前,由中国科学院青岛生物能源与过程研究所研究员李盛英带领的酶工程研究组,与中国科学院上海生命科学研究院植物生理生态研究所赵国屏和肖友利研究组,以及中国科学院上海有机化学研究所唐功利团队的多名学者合作,在国际上首次阐明了利福霉素SV转化为利福霉素B的详细生物合成途径及酶催化反应机制,相关成果已在线发表于最新出版的《自然-通讯》(Nature Communications)期刊上。

    基于2011年赵国屏研究组通过分子遗传学方法确认关键基因Rif15/16负责利福霉素SV到B转化的体内研究工作基础,该工作中研究人员成功在大肠杆菌中异源表达得到可溶性的转酮酶Rif15和细胞色素P450单加氧酶Rif16,在体外通过酶活重建、产物结构表征、13C标记实验和Rif16晶体结构解析彻底阐明了利福霉素SV转化为利福霉素B的生物合成途径及这两个酶的功能和催化机制,改写了Ghisalba等在36年前提出的“旧模型”(J. Antibiot. 35, 1982: 74-80)。研究团队发现,利福霉素SV首先在有氧条件下可自发被氧气化学氧化成利福霉素S,进而在转酮酶Rif15的作用下将2-酮糖的一个C2基团转移至利福霉素S上并重排生成含有C-O酯键结构的利福霉素L。接着P450单加氧酶Rif16拔取利福霉素L C-39位羟基上的氢原子,形成的氧自由基进攻临近芳环C-4位形成五元环结构,然后再经一系列电子重排和第二次C-1位置酚羟基上氢原子的拔取,生成不稳定的中间体化合物利福霉素O。该化合物在电子供体NADPH存在条件下,迅速被水解还原形成稳定的终产物利福霉素B。在此过程中,转酮酶Rif15表观上催化一个独特的C-O成键反应(通过常规的C-C成键和非常规重排形成);而P450单加氧酶Rif16则通过一个五元环的介导,成功实现了一种十分罕见的“酯醚转化”反应。这两个全新催化机制的发现,进一步拓宽了转酮酶和P450单加氧酶这两种常见生物催化剂的催化反应类型,加深了领域内对这两种酶的认识。该项研究的成功还将为进一步利用合成生物学方法有效进行新型利福霉素发现和工业菌种改造,进一步提升利福霉素的产量提供全新的理论依据。

    青岛能源所助理研究员齐飞飞和植生生态所博士雷超为该论文的共同第一作者。李盛英和肖友利为论文的共同通讯作者。该研究获得了山东省合成生物学重点实验室、山东省自然科学基金重大基础研究计划、中国科学院前沿重点研究项目和大科学计划培育项目、国家自然科学基金以及上海市科学技术委员会基金的支持。

  • 原文来源:http://news.bioon.com/article/6723825.html
相关报告
  • 《青岛能源所与上海植生所等团队合作阐明了利福霉素生物合成新机制》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-06-20
    •    结核病不仅有导致大量人类死亡的历史事件,而且至今仍是危害公共健康的顽固性呼吸道传染病。利福霉素类化合物是由地中海拟无枝酸菌产生的一类具有广谱抗菌作用的抗生素,对结核杆菌、麻风杆菌、链球菌、肺炎球菌等革兰氏阳性细菌,特别是耐药性金黄色葡萄球菌具有很强的拮抗作用,同时对某些革兰氏阴性细菌也有效果。由天然产物利福霉素SV或利福霉素B进行化学半合成的利福平、利福喷丁、利福布丁等药物进入了世界卫生组织的基础药物目录,作为一线抗结核药物挽救了数以万计结核病人的生命。自1957年首次发现以来,利福霉素的生物合成途径一直是生物化学家们的研究热点。尽管前期利用同位素标记和基因敲除(敲入)等方法已阐明其生物合成途径中的大部分环节,但利福霉素SV是如何转化为利福霉素B的这个关键环节却长时间困扰着科学界。   日前,由青岛能源所李盛英研究员带领的酶工程研究组,与中国科学院上海生命科学研究院植物生理生态研究所(上海植生所)赵国屏院士和肖友利研究组,以及中国科学院上海有机化学研究所唐功利团队的多名学者合作,在国际上首次阐明了利福霉素SV转化为利福霉素B的详细生物合成途径及酶催化反应机制,相关成果已在线发表于最新出版的 Nature Communications期刊上。   基于2011年赵国屏院士研究组通过分子遗传学方法确认关键基因Rif15/16负责利福霉素SV到B转化的体内研究工作基础,本工作中研究人员成功在大肠杆菌中异源表达得到可溶性的转酮酶Rif15和细胞色素P450单加氧酶Rif16,在体外通过酶活重建、产物结构表征、13 C 标记实验和Rif16晶体结构解析彻底阐明了利福霉素SV转化为利福霉素B的生物合成途径及这两个酶的功能和催化机制,改写了Ghisalba等在36年前提出的“旧模型”(J. Antibiot. 35 , 1982: 74-80 )。研究团队发现,利福霉素SV首先在有氧条件下可自发被氧气化学氧化成利福霉素S,进而在转酮酶Rif15的作用下将2-酮糖的一个C2基团转移至利福霉素S上并重排生成含有C-O酯键结构的利福霉素L。接着P450单加氧酶Rif16拔取利福霉素L C-39位羟基上的氢原子,形成的氧自由基进攻临近芳环C-4位形成五元环结构,然后再经一系列电子重排和第二次C-1位置酚羟基上氢原子的拔取,生成不稳定的中间体化合物利福霉素O。该化合物在电子供体NADPH存在条件下,迅速被水解还原形成稳定的终产物利福霉素B。在此过程中,转酮酶Rif15表观上催化一个独特的C-O成键反应(通过常规的C-C成键和非常规重排形成);而P450单加氧酶Rif16则通过一个五元环的介导,成功实现了一种十分罕见的“酯醚转化”反应。这两个全新催化机制的发现,进一步拓宽了转酮酶和P450单加氧酶这两种常见生物催化剂的催化反应类型,加深了领域内对这两种酶的认识。该项研究的成功还将为进一步利用合成生物学方法有效进行新型利福霉素发现和工业菌种改造,进一步提升利福霉素的产量提供全新的理论依据。   青岛能源所助理研究员齐飞飞和上海植生所雷超博士为本论文的共同第一作者。李盛英研究员和肖友利研究员为论文的共同通讯作者。该研究获得了山东省合成生物学重点实验室、山东省自然科学基金重大基础研究计划、中国科学院前沿重点研究项目和大科学计划培育项目、国家自然科学基金以及上海市科学技术委员会基金的支持。
  • 《中国科学院海洋研究所阐明菲律宾海深层流季节内变化新机制》

    • 来源专题:中国科学院文献情报系统—海洋科技情报网
    • 编译者:liguiju
    • 发布时间:2024-06-16
    • 近日,中国科学院海洋研究所胡敦欣院士团队基于长期连续的潜标观测,阐明了菲律宾海深层流季节内变化的新机制,研究成果发表于国际学术期刊Journal of Geophysical Research: Oceans。 目前关于西太平洋(菲律宾海)上1000米层海流的季节内变化特征及其机制已取得一些认知,但菲律宾海盆内深层环流的变化及其与上层海洋联系的认识仍不清楚。胡敦欣院士团队基于长时间连续的全水深现场潜标观测资料,揭示了菲律宾海全水深海流的季节内变化,特别是深层流变化机制以及极端事件(两次厄尔尼诺)对海流季节内变化的影响。 研究结果表明,菲律宾海经向流速存在两个主要的季节内变化周期分别是45天和62天,具体表现为:250–5000米的整层海流都具有显著的45天的变化,在1500米以上和2500米以下海流中可见62天的变化信号。进一步研究发现,近乎于全水深存在的45天变化和深层海洋的62天变化主要是由海盆正压罗斯贝波本征模调制,其能量来源于局地共振风场,1500米以上的62天的季节内变化受大洋第一斜压Rossby波的控制。 此外,研究发现ENSO事件对西太平洋上层海洋季节内波动有显著调节作用,体现在2015/2016年和2018/2019年厄尔尼诺事件半年之后,在西太平洋的上层海洋分别出现了两次超强的季节内波动。 论文第一作者为原中国科学院海洋研究所博士研究生袁欣,通讯作者为中国科学院海洋研究所王庆业研究员,合作者包括胡敦欣院士、冯俊乔副研究员、王富军副研究员和原硕士研究生田志兆。研究得到了国家自然科学基金、中国科学院战略性先导科技专项联合资助。 文章信息:Yuan, X., Wang, Q.*, Hu, D., Feng, J., Wang, F., & Tian, Z. (2024). Intraseasonal variability of full-depth currents in the Philippine Sea. Journal of Geophysical Research: Oceans, 129, e2023JC019827. https://doi.org/10.1029/2023JC019827