《BioRxiv,4月18日,Distinct Structural Flexibility within SARS-CoV-2 Spike Protein Reveals Potential Therapeutic Targets》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-04-19
  • Distinct Structural Flexibility within SARS-CoV-2 Spike Protein Reveals Potential Therapeutic Targets

    View ORCID ProfileSerena H Chen, View ORCID ProfileM. Todd Young, View ORCID ProfileJohn Gounley, View ORCID ProfileChristopher Stanley, View ORCID ProfileDebsindhu Bhowmik

    doi: https://doi.org/10.1101/2020.04.17.047548

    Abstract

    The emergence and rapid worldwide spread of the novel coronavirus disease, COVID-19, has prompted concerted efforts to find successful treatments. The causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), uses its spike (S) protein to gain entry into host cells. Therefore, the S protein presents a viable target to develop a directed therapy. Here, we deployed an integrated artificial intelligence with molecular dynamics simulation approach to provide new details of the S protein structure. Based on a comprehensive structural analysis of S proteins from SARS-CoV-2 and previous human coronaviruses, we found that the protomer state of S proteins is structurally flexible. Without the presence of a stabilizing beta sheet from another protomer chain, two regions in the S2 domain and the hinge connecting the S1 and S2 subunits lose their secondary structures. Interestingly, the region in the S2 domain was previously identified as an immunodominant site in the SARS-CoV-1 S protein. We anticipate that the molecular details elucidated here will assist in effective therapeutic development for COVID-19.

    *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.04.17.047548v1
相关报告
  • 《 bioRxiv,4月18日,Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-04-19
    • Synthetic nanobodies targeting the SARS-CoV-2 receptor-binding domain Justin D Walter, Cedric A.J. Hutter, Iwan Zimmermann, Jennifer Earp, Pascal Egloff, Michèle Sorgenfrei, Lea M Hürlimann, Imre Gonda, Gianmarco Meier, Sille Remm, Sujani Thavarasah, Philippe Plattet, Markus A. Seeger doi: https://doi.org/10.1101/2020.04.16.045419 Abstract The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has resulted in a global health and economic crisis of unprecedented scale. The high transmissibility of SARS-CoV-2, combined with a lack of population immunity and prevalence of severe clinical outcomes, urges the rapid development of effective therapeutic countermeasures. Here, we report the generation of synthetic nanobodies, known as sybodies, against the receptor-binding domain (RBD) of SARS-CoV-2. In an expeditious process taking only twelve working days, sybodies were selected entirely in vitro from three large combinatorial libraries, using ribosome and phage display. We obtained six strongly enriched sybody pools against the isolated RBD and identified 63 unique anti-RBD sybodies which also interact in the context of the full-length SARS-CoV-2 spike protein. It is anticipated that compact binders such as these sybodies could feasibly be developed into an inhalable drug that can be used as a convenient prophylaxis against COVID-19. Moreover, generation of polyvalent antivirals, via fusion of anti-RBD sybodies to additional small binders recognizing secondary epitopes, could enhance the therapeutic potential and guard against escape mutants. We present full sequence information and detailed protocols for the identified sybodies, as a freely accessible resource. This report will be updated as we further characterize the identified sybodies, in terms of affinities, scaled-up purification yields, and their potential to neutralize SARS-CoV-2 infections. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.
  • 《bioRxiv,5月24日,Structural basis of SARS-CoV-2 spike protein induced by ACE2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-05-25
    • Structural basis of SARS-CoV-2 spike protein induced by ACE2 View ORCID ProfileTomer Meirson, David Bomze, Gal Markel doi: https://doi.org/10.1101/2020.05.24.113175 Abstract Motivation: The recent emergence of the novel SARS-coronavirus 2 (SARS-CoV-2) and its international spread pose a global health emergency. The viral spike (S) glycoprotein binds the receptor (angiotensin-converting enzyme 2) ACE2 and promotes SARS-CoV-2 entry into host cells. The trimeric S protein binds the receptor using the distal receptor-binding domain (RBD) causing conformational changes in S protein that allow priming by host cell proteases. Unravelling the dynamic structural features used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal novel therapeutic targets. Using structures determined by X-ray crystallography and cryo-EM, we performed structural analysis and atomic comparisons of the different conformational states adopted by the SARS-CoV-2-RBD. Results: Here, we determined the key structural components induced by the receptor and characterized their intramolecular interactions. We show that κ-helix (also known as polyproline II) is a predominant structure in the binding interface and in facilitating the conversion to the active form of the S protein. We demonstrate a series of conversions between switch-like κ-helix and β-strand, and conformational variations in a set of short α-helices which affect the proximal hinge region. This conformational changes lead to an alternating pattern in conserved disulfide bond configurations positioned at the hinge, indicating a possible disulfide exchange, an important allosteric switch implicated in viral entry of various viruses, including HIV and murine coronavirus. The structural information presented herein enables us to inspect and understand the important dynamic features of SARS-CoV-2-RBD and propose a novel potential therapeutic strategy to block viral entry. Overall, this study provides guidance for the design and optimization of structure-based intervention strategies that target SARS-CoV-2.