《钝化技术减少锡锌矿太阳能电池缺陷,效率达11.51%》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-04-28
  • 在过去的几十年里,太阳能电池日益普及,全球越来越多的个人和企业依靠太阳能为家庭或日常运营供电。因此,世界各地的能源工程师一直在努力寻找有利于光伏发展、环保无毒且易于采购和加工的材料。

    这些材料包括基于锡锌矿的材料,例如Cu?ZnSnS? (CZTS),这是一种半导体材料,其晶体结构与天然存在的锡锌矿矿物类似。与目前最常用的传统硅基光伏电池相比,锡锌矿太阳能电池具有诸多优势,包括更低的制造成本、更低的毒性成分和更高的灵活性。

    尽管潜力巨大,但迄今为止开发的硫锌矿太阳能电池的能量转换效率 (PCE) 却远低于硅基太阳能电池。这在很大程度上是由于硫锌矿基材料中存在原子级缺陷,这些缺陷会捕获载流子并引发非辐射复合,而非辐射复合过程会导致能量损失,从而降低太阳能电池的性能。

    深圳大学和雷恩大学的研究人员最近推出了一种新的钝化技术,该技术可以帮助抑制CZTS和其他锡锌矿中的缺陷,从而提升基于这些材料的太阳能电池的性能。他们提出的技术发表在《自然能源》杂志上,经验证,该技术可使太阳能电池的效率达到11.51%,且无需使用任何其他添加剂来改善材料性能。

    “CZTS 是一种极具竞争力的光伏材料,尤其适用于多结太阳能电池,”吴彤、陈硕及其同事在论文中写道。“然而,器件的功率转换效率多年来一直停滞不前。深能级缺陷,例如硫空位 (V S ),会导致严重的载流子非辐射复合。我们提出了一种通过在富氧环境中对 CdS/CZTS 异质结进行热处理来钝化 V S的策略。”

    该研究团队设计的钝化策略需要在富氧环境中加热CdS/CZTS异质结,即锡锌矿材料(即CZTS)与硫化镉(CdS)缓冲层之间的界面。缓冲层是太阳能电池中的中间层,位于吸收材料(在本例中为CZTS)和透明导电材料之间。

    “在这个过程中,V S被氧原子占据,从而抑制了 V S缺陷,”吴、陈及其同事解释说。“此外,Cd 离子向 CZTS 吸收层的扩散,以及正 Na-O 和 Sn-O 复合物的形成,可以钝化相关缺陷。这些效应可以减少电荷复合,并实现更有利的能带排列。”

    为了证明其钝化方法的潜力,研究人员将其应用于真实的CZTS太阳能电池,并通过一系列测试评估了这些电池的性能。他们发现,该策略无需使用任何添加剂或外部掺杂策略,即可提高电池的PCE。

    吴、陈及其同事写道:“我们证明了,在无需任何外部阳离子合金化的情况下,空气溶液处理的CZTS太阳能电池(带隙为1.5 eV)的认证效率达到11.51%。这项研究为锡锌矿太阳能电池的缺陷钝化和性能改进机制提供了见解。”

    未来,吴、陈及其同事的最新研究以及他们设计的新钝化策略可以得到进一步完善,并应用于其他基于锡锌矿的太阳能电池。最终,它将有助于这些太阳能电池的进步,进而促进它们在现实世界中的应用。

  • 原文来源:https://www.wedoany.com/zh-cn/shortnews/6RvL66OX.html
相关报告
  • 《Science:31.25%效率的钙钛矿/硅双结太阳能电池的界面钝化》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 导读 通过最大化每单位面积产生的电力,可以加快光伏(PV)的部署,因为现在PV系统的成本分布主要由系统平衡组件(如安装系统、布线、人力和逆变器)主导,而不是PV面板的成本。这种系统平衡成本与安装面积大致成比例,并且有利于具有高功率与面板面积比的PV技术。然而,结晶硅(C-Si)太阳能电池的最高功率转换效率(PCE)为26.8%,接近理论极限29.5%。在太阳照射条件下,克服这种PCE限制的唯一经验证方法是将几种互补的光活性材料(即多个结)组合在一个单一器件中(3)。在迄今为止报道的不同类型的多结设计中,c-Si与金属卤化物钙钛矿的组合在串联太阳能电池中一直是研究的焦点,因为它具有高PCE和低制造成本的潜力。 金属卤化物钙钛矿结合了多种关键特性,适用于有效的多结光伏,包括高吸收系数和尖锐的吸收边缘,具有长扩散长度的双极电荷传输,以及可调的组成能隙(Eg)。薄膜钙钛矿太阳能电池可以直接沉积在c-Si电池的正面,以降低热化损失并将可实现的PCE范围扩展到>30%。单片两端串联结构的性能潜力通过报告的在1平方厘米照射面积上高达33.7%的PCE得到了证明。迄今为止报告的大多数高效串联电池使用一个Si晶片,其前表面经过机械或化学抛光,或者具有比钙钛矿层厚度更小的适应性亚微米纹理(通常为500纳米至1毫米)。这种平面或纳米纹理的正面拓扑结构——通常通过蚀刻PV行业中常用的制备成几微米高度的金字塔——使得可以使用标准的溶液在基体上面沉积无针孔的钙钛矿薄膜。然而,这种修改以光学性能为代价,因为串联电池的正面是平坦的,并且当使用亚微米级的Si纹理时,因为非均匀性的溶液处理的使钙钛矿膜平坦化。因此,由于缺乏反弹效应,这些电池设计在串联的正极处呈现了更多的反射损失。总的来说,串联器件的正面具有金字塔纹理可以限制反射损失,因为它可以吸收邻近金字塔反射的光线,而Si晶片两侧都具有纹理则可以提高对红外光的吸收能力。 我们先前报道了一种混合的两步沉积方法,将热蒸发和旋转涂相结合,以使钙钛矿层覆盖在微米级Si金字塔上,从而在后表面和前表面都具有纹理的钙钛矿/c-Si串联电池中进行了覆盖。尽管这些串联电池由于前面的金字塔纹理而具有较高的光电流,但非辐射复合损失相当大。其中一个挑战是迄今为止大多数报告的顶表面钝化方法不能直接适用于微米级纹理,因为它们涉及从液体溶液中沉积纳米级有机层。并且,这些加工路线通常在这种表面纹理上产生非均匀(不完全)的涂层。 成果掠影 鉴于此,洛桑联邦理工学院微电子研究所Xin Yu Chin在之前的工作基础上,利用磷酸化合物在两个不同的角色中来钝化界面缺陷,设计了一种串联器件,将钙钛矿层覆盖在具有微米级金字塔纹理的硅底部电池上,以提高光电流。在处理序列中使用添加剂,调节钙钛矿的结晶过程,并减轻发生在钙钛矿顶部与电子选择性接触(富勒烯C60)之间的复合损失。我们展示了一个有效面积为1.17平方厘米的器件,实现了31.25%的认证功率转换效率。相关研究成果以“Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells”为题,发表在顶级期刊《Science》上。 核心创新点 本文的核心创新点是通过在钙钛矿/C-Si太阳能电池中采用具有微米级纹理的硅片、优化钙钛矿沉积过程并使用磷酸基团进行界面钝化,成功减轻了非辐射复合损失,实现了高达31.25%的电池转换效率。 成果启示 本文确定并减轻了发生在具有微米级纹理的硅片的钙钛矿/c-Si串联电池界面的非辐射复合损失,这是c-Si光伏中使用的工业标准。使用Me-4PACz减少了钙钛矿/HTL界面的电压损失,而在钙钛矿沉积序列中加入FBPAc减少了钙钛矿/C60 ETL界面的电压损失,并导致具有较大结晶领域的更有利的钙钛矿微观结构。通过XPS和SIMS成像,可以看到FBPAc存在于钙钛矿顶部表面,并通过其磷酸基团与钙钛矿中的铅缺陷发生配位作用。总的来说,将具有微米级纹理的c-Si、使用混合的两步法在此纹理上均匀沉积的1毫米厚钙钛矿吸收层以及吸收层两侧的磷酸基团结合起来,以改善界面钝化效果,实现了一个独立认证的31.25% PCE的串联电池。这些结果表明,如何将具有标准工业微米级纹理的c-Si太阳能电池升级,以将其PCE提高到>30%。 原文详情: 原文详情:Xin Yu Chin et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells.Science381,59-63(2023).DOI:10.1126/science.adg0091.
  • 《倒置结构钙钛矿太阳能电池研究取得重要进展》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-07-07
    • 钙钛矿以其长的载流子扩散长度、长的载流子复合寿命和宽的吸收范围,已经成为低成本和高性能太阳能电池的潜在材料。经过十多年的发展,单结钙钛矿太阳能电池的光电转换效率已提高至25%以上,为太阳能电池产业的升级转型提供了新途径。因倒置平板结构器件具有可低温制备、可忽略的迟滞效应、高稳定性的特性,并可以制备成叠层电池,所以其备受重视。然而由于钙钛矿材料的多晶性和离子特性,钙钛矿中存在大量导致离子迁移和载流子非辐射复合的缺陷,且缺陷是水/氧渗透的主要通道,会显著降低钙钛矿薄膜甚至器件的稳定性。 前期,中国科学院宁波材料技术与工程研究所有机光电材料与器件团队在葛子义研究员的带领下通过薄膜形貌调控、载流子传输层修饰和新型二维钙钛矿材料设计(Angew. Chem.Int. Ed. 2023, 62, e2022175; Adv. Funct. Mater. 2023, 2301956; Adv. Energy Mater. 2021, 11, 2101416;Adv. Funct. Mater. 2022, 10, 2210600;Infomat 2022, e12379;Nano Energy 2022, 93, 106800;Energy Environ. Sci. 2022, 15, 3630)等手段,大幅提升了钙钛矿太阳能电池的效率和稳定性。然而,钙钛矿中的缺陷和光诱导引起的相分离将显著降低钙钛矿太阳能电池的性能和稳定性。为了解决这一问题,团队基于添加剂工程,利用可变形添加剂优化前驱体溶液胶体尺寸分布,增大钙钛矿薄膜晶粒尺寸,释放晶界残余应力,钝化铅、碘和有机阳离子缺陷,抑制光诱导引发的相分离。此外,添加剂还可优化钙钛矿能级,从而促进载流子提取/传输,减少陷阱辅助复合。通过该方法制备的钙钛矿太阳能电池的性能得到大幅度提升,基于富溴钙钛矿(FA0.88Cs0.12PbI2.64Br0.36) 和贫溴钙钛矿(FA0.96Cs0.04PbI2.8Br0.12)的器件分别获得了23.18%和24.14%的最佳效率,并且基于贫溴钙钛矿的柔性钙钛矿太阳能电池也获得了23.13%的出色效率,是迄今为止报道的柔性钙钛矿太阳能电池的最高值之一。这项工作为添加剂工程中钝化缺陷、应力消除和抑制相分离提供了新的见解,为开发最先进的太阳能电池提供了可靠方法。 相关成果以“A Deformable Additive on Defects Passivation and Phase Segregation Inhibition Enables the Efficiency of Inverted Perovskite Solar Cells over 24%”为题发表在国际知名期刊Advanced Materials上。宁波材料所博士后谢莉莎、硕士生刘健为共同第一作者,宁波材料所葛子义研究员和刘畅研究员为该论文的通讯作者。上述工作得到国家相关人才计划(21925506)、国家自然科学基金(U21A20331、81903743、22279151、22209192、62275251)和博士后面上项目(2022M713242)等项目的支持。(来源:中国科学院宁波材料技术与工程研究所) 相关论文信息:https://doi.org/10.1002/adma.202302752