《太阳能电池和光传感器——2D方法的缺陷较少》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2017-08-16
  • (Nanowerk新闻)提高太阳能电池的效率要求不含杂质和结构缺陷的材料。在KAUST的许多学科中,科学家已经证明了二维有机-无机杂化材料的缺陷远比厚的3D版本少得多。

    现代电子技术依靠的技术可以发展几乎完美的硅晶体;完美无瑕的原子水平。这是至关重要的,因为缺陷和杂质会将电子分散,从而对材料的电子性能产生不利影响。

    但是混合的perovskites,一种令人兴奋的电子材料,不能使用为硅开发的外延层或层方法来建造。相反,它们是使用基于解决方案的过程产生的。虽然这使得它们比硅更便宜,但它也使纯度更难实现,因为缺陷种群和物种对加工条件很敏感。

    奥斯曼•克尔KAUST太阳能中心和多个部门的同事一起在KAUST和多伦多大学,证明二维层钙钛矿材料可以实现水平的纯度更高的比是可能的3 d对应(纳米快报,“二维混合单一钙钛矿晶体超低self-doping”)。

    “二维混合的perovskites是大型混合钙钛矿家族的一个子群,”来自Bakr实验室的主要作者和博士学位获得者Wei Peng解释道,“它们可以通过在三维的钙钛矿结构中插入大型有机碳来获得。”

    混合的perovskites由铅和卤化物(如碘)原子和有机成分组成。这类材料在太阳能电池中已经显示出了突破性的能量转换效率,同时具有低的生产成本和在柔性设备中集成的可能性。这种结合的特性使混合的perovskites成为一种令人兴奋的光电应用材料。

    彭、巴克尔和同事们制作了一种二维材料,它是由一种具有有机成分的混合的perovskites的周期性层组成的,它的组成部分是苯乙胺或者甲基铵。使用一种基于解决方案的制作方法,将层置于金电极上,这样团队就可以测量电导率。

    他们的测量结果表明,2D材料所包含的缺陷比体积混合的perovskites少了三个数量级。研究小组认为,这种还原作用是由于在结晶过程中,苯乙胺的大有机阳离子抑制了缺陷的形成。

    接下来,研究小组通过建立具有高光探测能力的光电导体,展示了他们的光电应用材料的潜力。这些结果预示着设计和优化钙钛矿太阳能电池的进一步发展。“未来深入研究如何抑制缺陷的形成将有助于我们的理解和效益目标材料工程,”彭说。

    ——文章发布于2017年8月13日

相关报告
  • 《我国学者在高效稳定钙钛矿太阳能电池方面取得进展》

    • 来源专题:能源情报网监测服务平台
    • 编译者:郭楷模
    • 发布时间:2025-02-06
    • 图 (A)器件结构示意图;(B、C)不同构型的电池老化后的ToF-SIMS深度剖面图。(D)无MoS2钝化和有MoS2钝化的钙钛矿的相变能量曲线。(E)钙钛矿、MoS2/钙钛矿、MoS2/钙钛矿/MoS2薄膜的TRPL衰减曲线。(F)在中国计量科学研究院认证的最优钙钛矿太阳能电池性能;(G)最优钙钛矿微型组件性能;(H)钙钛矿太阳能电池的高温运行稳定性。   在国家自然科学基金项目(批准号:52125206、52302320)等资助下,北京大学周欢萍教授与合作者在高效稳定钙钛矿太阳能电池方面取得进展。相关研究成果以“晶圆级单层硫化钼集成实现高效稳定钙钛矿太阳能电池(Wafer-scale monolayer MoS2 film integration for stable, efficient perovskite solar cells)”为题,于2025年1月10日在线发表于《科学》(Science),论文链接:https://www.science.org/doi/10.1126/science.ado2351。   金属卤化物钙钛矿以其优越的光电性能和低廉的成本成为最有前景的新一代光伏材料。尽管钙钛矿太阳能电池发展迅速,但同时实现高效和稳定仍是巨大挑战。卤化物钙钛矿由于其软晶格和相对较弱的键,在太阳能电池运行过程中容易降解。即使通过封装来隔离水分和氧气,钙钛矿在热、光照和电场下的不稳定性仍是其商业化应用亟需解决的关键问题。   周欢萍教授团队提出将晶圆级连续单层MoS2集成到钙钛矿层的上、下界面以形成稳定器件构型,从而显著增强钙钛矿太阳能电池的效率和稳定性。研究表明,晶圆级MoS2插层由于连续二维形态,从物理上最大程度地阻挡了钙钛矿离子向载流子传输层的迁移。而且,MoS2通过与钙钛矿强配位相互作用在化学上稳定了α相FAPbI3。MoS2插层还通过与钙钛矿形成Pb-S键化学钝化钙钛矿表面缺陷,并通过与钙钛矿I型能带排列阻挡少子复合,从而显著减少了载流子非辐射复合。此外,单层MoS2的原子级厚度克服了钝化质量和载流子传输之间难以协同的挑战,最大限度地提高了钙钛矿太阳能电池的开路电压(认证VOC=1.20 V)和填充因子(认证FF=84.3%)。包含MoS2/钙钛矿/MoS2结构的钙钛矿太阳能电池和组件分别实现了高达26.2%(认证稳态效率为25.9%)和22.8%的光电转换效率。此外,电池表现出卓越的湿热稳定性(在85℃和85%相对湿度下老化1200小时后保留初始效率的95%)、光照稳定性(在连续一个太阳照射下在开路状态下老化2000小时后保留初始效率的96.6%)和运行稳定性(在室温下连续一个太阳照射下在最大功率点跟踪2000小时后效率基本没有衰减,在85℃下连续一个太阳照射下在最大功率点跟踪1200小时后保留初始效率的96%)。   本研究通过界面工程将二维材料与软晶格光电材料结合起来,为提高钙钛矿基光电器件的性能提供了有效策略,并可以扩展到传感器、探测器等其他相关领域支撑高效稳定器件的构建。
  • 《BaZrS3薄膜有望用于太阳能电池和LED》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:husisi
    • 发布时间:2020-01-07
    • 科学家们用硫系钙钛矿BaZrS3(一种硫系钙钛矿)制备了薄膜,并证实这些材料具有理论界预测的有用的电子和光学特性。这些薄膜结合了超强的光吸收和良好的电荷传输特性,这两个特性使它们成为光电和LED等应用的理想选择。 例如,在太阳能电池板中,实验结果表明,BaZrS3薄膜比厚度相同的传统硅基材料更能有效地将太阳光转化为电能,BuffaloCollegeofArtsandSciences物理系教授、首席研究员HaoZeng说。这可能会降低太阳能成本,特别是因为即使在有缺陷的情况下,新薄膜的表现也令人钦佩。(Zeng教授解释说,制造近乎完美的材料通常更贵。) “几十年来,只有少数半导体材料被使用,硅是主导材料,”Zeng说我们的薄膜为半导体研究开辟了新的方向。我们有机会探索一种全新材料的潜力。” 这项研究发表在11月的《NanoEnergy》杂志上。 该项目由USDepartmentofEnergy(DOE)SunShotaward和NationalScienceFoundation(NSF)可持续化学、工程和材料奖资助,包括UB;来自中国的太原师范大学、南方科技大学、西安交通大学和中国科学院;LosAlamosNationalLaboratory;RensselaerPolytechnicInstitute;的研究人员的贡献。 理论预测启发的实验 近年来,理论界计算出各种硫系钙钛矿应具有有用的电子和光学性质,这些预测引起了HaoZeng等实验学家的兴趣和想象。 BaZrS3并不是一种全新的材料。Zeng研究了该化合物的历史,发现了可以追溯到20世纪50年代的信息,“它已经存在了半个多世纪了。”他说。在早期的研究中,尼亚加拉大瀑布的一家公司以粉末的形式生产了它。我认为人们很少关注它。” 研究人员利用激光加热和蒸发钡锆氧化物,制备了BaZrS3薄膜。蒸汽沉积在蓝宝石表面,形成一层薄膜,然后通过一种叫做硫化的化学反应转化为最终的材料。 “传统上,半导体研究主要集中在传统材料上,”Hui说这是一个探索新事物的机会。硫族化钙钛矿与广泛研究的卤化物钙钛矿有一些相似之处,但不受后者材料的毒性和不稳定性的影响。 “现在我们已经有了一个由BaZrS3制成的薄膜,我们可以研究它的基本特性,以及它如何应用于太阳能电池板、LED、光学传感器和其他应用,”Wei说。