《崔宗强/单玉萍/施兴华团队揭示单个埃博拉病毒入侵细胞动态机制》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-07-30
  • 埃博拉病毒(Ebola Virus, EBOV)是对人类最致命的病原体之一,病毒感染引起严重出血热,致死率可达90%。病毒进入宿主细胞是感染过程中的第一步也是关键的一步,但其入侵机制仍有待研究。最近,中国科学院武汉病毒研究所崔宗强研究员与长春工业大学单玉萍教授、国家纳米科学中心施兴华研究员合作,基于单颗粒力示踪、动力学模拟和单颗粒荧光示踪技术,实时揭示了单个EBOV的入侵动态过程和动力学机制。

    研究人员首先构建了丝状埃博拉病毒样颗粒(EBO-VLP)并对其进行荧光标记,该丝状结构EBO-VLP和野生型EBOV具有同样的入侵细胞能力,但其内部没有病毒核酸,不能复制。研究人员利用双功能PEG Linker将EBO-VLP连接到原子力显微镜的探针上,通过力示踪技术实时监测单个EBO-VLP内吞进入细胞的动态过程。结果发现EBO-VLP可以通过水平或垂直两种模式进入细胞,两种模式对应的力和时间不同。对两种模式进行分子动力学模拟,也说明EBO-VLP以垂直方向进入细胞比水平模式所需时间更长,所需能量(也就是力)更大。通过分析计算力示踪检测到的内吞力信号,推测大约有九个受体结合位点在EBO-VLP入侵过程中参与病毒内吞。实时单颗粒荧光示踪显示EBO-VLP与细胞巨胞饮标志物能够很好地共定位,并具有相同的运动速率、轨迹、均方位移等,巨胞饮抑制剂可以显著抑制其入侵,从而可视化地证实了EBO-VLP是以巨胞饮途径入侵细胞。

    该研究实时动态解析了单个EBO-VLP入侵宿主细胞过程,揭示了丝状EBO-VLP以水平或垂直两种模式进入细胞,以及对应的力学、时-空、能量、与受体作用方式、入侵途径等精细机制,对深入理解EBOV的感染机理具有重要意义,也为开发抗病毒途径提供了基础。

    这一研究成果已在ACS Nano(《美国化学会-纳米》)期刊在线发表,长春工业大学硕士生张清荣、国家纳米科学中心特别研究助理田发林博士和中国科学院武汉病毒研究所硕士生王飞为论文共同第一作者,中国科学院长春应用化学研究所王宏达研究员等参与了该项研究。该研究得到了国家重点研发计划、国家自然科学基金、中国科学院先导专项等基金项目的资助。

  • 原文来源:https://pubs.acs.org/doi/10.1021/acsnano.0c01739;http://www.whiov.cas.cn/kxyj_160249/kyjz_160280/202006/t20200619_5609255.html
相关报告
  • 《PLOS Pathogens:揭示埃博拉病毒破坏血-视网膜屏障机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-02-07
    • 埃博拉病毒(Ebola virus,EBOV)是属于丝状病毒科的一种高致病性病毒,感染人和灵长类动物引发烈性出血性传染病“埃博拉出血热”。1976年埃博拉病毒第一次出现以来,埃博拉疫情反复出现,造成了大量的死亡病例,严重危害人类生命安全。部分埃博拉出血热幸存者出现眼部的持续性感染和眼部后遗症,这可能与内血-视网膜屏障的破坏有关,但其机制尚不清楚。近日,中国科学院武汉病毒研究所/生物安全大科学研究中心崔宗强团队发现埃博拉病毒可以通过刺激周细胞分泌血管内皮生长因子(Vascular endothelial growth factor,VEGF)破坏内血-视网膜屏障。 本研究构建了多种视网膜细胞共培养的内血-视网膜屏障(inner blood-retinal barrier,iBRB)模型,通过对屏障的电阻测定和渗透性实验,发现丝状埃博拉病毒样颗粒(Ebola virus-like particle,EBO-VLP)造成内血-视网膜屏障的破坏。然而,埃博拉病毒样颗粒并不是直接对构成屏障的视网膜内皮细胞造成损伤来破坏屏障。之后,科研人员通过细胞因子抗体矩阵筛选发现,埃博拉病毒样颗粒可刺激周细胞分泌血管内皮生长因子,VEGF会破坏内血-视网膜屏障的完整性。加入针对VEGF的抗体(Avastin),可阻碍埃博拉病毒样颗粒对血-视网膜屏障的破坏。研究发现,埃博拉病毒样颗粒刺激周细胞产生的VEGF,下调视网膜内皮细胞紧密连接蛋白claudin-1的表达,导致血-视网膜屏障的破坏。其中,埃博拉病毒的表面糖蛋白在病毒破坏内血-视网膜屏障中起到关键作用。 进一步,研究人员在动物体内验证了埃博拉病毒样颗粒对内血-视网膜屏障的破坏机制。研究通过玻璃体注射将埃博拉病毒样颗粒导入大鼠的视网膜发现,病毒样颗粒对视网膜造成明显的病理性损伤,内血-视网膜屏障的渗透性显著提高。研究结合免疫荧光和蛋白质免疫印迹实验发现,埃博拉病毒样颗粒会刺激大鼠视网膜内VEGF的分泌,导致紧密连接蛋白claudin-1蛋白表达下降。加入VEGF的抗体后,显著减弱埃博拉病毒样颗粒造成的视网膜损伤及屏障渗透性变化。 该研究发现了埃博拉病毒破坏血-视网膜屏障新机制,对于探讨病毒在眼部持续性感染导致并发症或后遗症的致病机理具有重要意义,并将有助于开发针对埃博拉病毒持续性感染及后遗症的治疗手段。相关研究成果在线发表在PLOS Pathogens上。研究工作得到中国科学院战略性先导科技专项、国家重点研发计划、国家自然科学基金等的支持。  
  • 《Nature:首次揭示疱疹病毒入侵神经系统机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2021-11-22
    • 超过一半的美国成年人是HSV1(单纯疱疹病毒1型)的携带者,这种病毒在周围神经系统中休眠,永远无法根除。一些HSV1携带者甚至永远不会经历HSV1带来的如此多的唇疱疹。但对其他一些HSV1携带者来说,它可以导致失明或危及生命的脑炎。越来越多的证据表明,它有助于痴呆症的发生。 作为HSV1的近亲,HSV2更常见的是通过性接触传播,可在分娩过程中作为新生儿疱疹从母亲传给新生儿。新生儿疱疹的表现为婴儿全身的病变。大多数婴儿都能康复,但在最糟糕的情况下,它可以造成大脑损伤或在所有器官中传播,并导致死亡。 在一项新的研究中,来自美国西北大学费恩柏格医学院的研究人员揭示了HSV1感染神经系统的狡猾策略,这就为HSV1和HSV2打开了一条需要已久的疫苗开发之路。相关研究结果于2021年11月17日在线发表在Nature期刊上,论文标题为“Herpesviruses assimilate kinesin to produce motorized viral particles”。 论文通讯作者、西北大学费恩柏格医学院微生物学与免疫学教授Greg Smith说,“我们迫切需要一种疫苗来防止疱疹病毒侵入神经系统。” 这项新的研究发现了一条通往疫苗开发的路线。它发现了疱疹病毒是如何劫持来自上皮细胞的一种蛋白,并将它变成一种“叛徒”,以帮助这种病毒进入周围神经系统。他们把这个过程称为“同化(assimilation)”。Smith说,这一发现可能对许多病毒产生广泛的影响,包括HIV和SARS-CoV-2。 搭便车 Smith说,“疱疹病毒需要将它的遗传密码注入细胞核,这样它就可以开始制造更多的疱疹病毒。它对宿主细胞进行重编程,使其成为一个病毒工厂。最大的问题是它是如何进入神经元的细胞核中?” 像许多病毒一样,疱疹病毒在细胞内称为微管的火车轨道上跳跃,并使用称为动力蛋白(dynein)和驱动蛋白(kinesin)的蛋白引擎沿轨道移动。Smith及其研究团队发现,疱疹病毒使用它从其他细胞带来的驱动蛋白引擎,将它运送到神经元的细胞核。驱动蛋白变成叛徒,为疱疹病毒服务。 Smith说,“通过了解疱疹病毒是如何实现这一令人难以置信的壮举以进入我们的神经系统的,我们如今可以考虑如何去掉这种能力。如果你能阻止它同化驱动蛋白,你将让疱疹病毒不能感染神经系统。你就有了用于预防性疫苗开发的候选对象。” 疱疹病毒进行“跨国”旅行 把宿主细胞想象成一个铁路站台。所有的轨道都通向称为中心体的枢纽。有两种类型的火车引擎:动力蛋白和驱动蛋白。其中的一种火车引擎向中心体--比如说市中心--行驶,另一种则驶离中心体前往郊区。 当一种更典型的病毒,如流感病毒,感染粘膜上皮细胞(排列在你的鼻子和嘴里的细胞)时,它抓住这两种引擎并在微管束上来回移动,直到它最终或多或少地偶然到达细胞核。总的来说,从郊区经由中心体到达细胞核是一个短暂的通勤过程。 但顺着神经旅行相当于一次跨国旅行。疱疹病毒在这次旅行中跳上了动力蛋白引擎,但它也确保了驱动蛋白引擎不会把它带回原路。 Smith说,“这是一段很长的路要走。这可能需要八个小时才能从神经元的末梢走到中心体。”但是动力蛋白引擎不能把它带到比中心体更远的地方。而疱疹病毒需要到达细胞核。这时,它把手伸进它的“口袋”,拿出它从粘膜上皮细胞中劫持的驱动蛋白引擎,并说服驱动蛋白成为其团队的一部分。在一次背叛行为中,被疱疹病毒同化的驱动蛋白把它直接运到了细胞核中。 论文共同第一作者、Smith实验室研究生Caitlin Pegg说,“这是第一次发现疱疹病毒重新利用一种细胞蛋白,并利用它来驱动后续的感染回合。我们很高兴能进一步发现这些病毒进化出的分子机制,这些机制使它们成为可以说是科学界已知的最成功的病原体。” 参考资料: Caitlin E. Pegg et al. Herpesviruses assimilate kinesin to produce motorized viral particles. Nature, 2021, doi:10.1038/s41586-021-04106-w.