《石墨烯最新Science:检测固态系统中电子间相互作用的“指纹”》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2018-08-31
  • 量子-相对论物质(quantum-relativistic matter)是自然界中极为普遍的存在,也是众所周知难以探测的物质。根据量子理论,通过施加电场或者磁场产生限域效应可以加强电子间的相互作用,从而为探测强关联量子体系中的一系列奇异物质和现象提供可能性。以此为依据,量子点在磁场中(量子霍尔态)时,人们认为库伦作用和朗道能级间载流子的重新分布能够典型的婚礼蛋糕型电子能级结构。虽然有研究在经历超流-莫特绝缘体转变过程的超冷原子中观测到过相似结构,但在固态系统中实现相应的观测依然是一个巨大的挑战。

    成果简介

    美国国家标准与技术研究院的J. A. Stroscio(通讯作者)等人利用隧道测量技术成功地将环形石墨烯谐振器中空间约束和磁约束之间的相互影响可视化,并直接观测到了电子相互作用的痕迹。石墨烯是一种表面暴露大量电子的二维材料,因此被认为是研究外加场中能级变化的理想材料。研究人员首先将石墨烯器件冷却到绝对零度左右,以便创造量子点-小岛作为人工原子,在强度为1特斯拉的磁场中,量子点中的电子堆积更加紧密,相互作用也被加强,最终这些电子将被以导电-绝缘同心环交替的形式进行重排。通过扫描隧道显微镜,不同电子能级的同心环图像被堆放在一起最终实现婚礼蛋糕型结构。因此这一研究为极端条件下观测和了解量子-相对物质的行为提供了有效的方法。2018年8月24日,相关成果以题为“Interaction-driven quantum Hall wedding cake–like structures in graphene quantum dots”在线发表在Science上。

相关报告
  • 《基于石墨烯的生物传感器可以检测DNA癌症标记物》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-03-31
    • 通过病人血液或血清的DNA癌症标记物可能通过基于石墨烯的生物传感器检测到,这可能会导致一段时间的液体活检。相反,在当今的设计中需要大量的DNA。 伊利诺伊大学香槟分校(University of Illinois at Urbana-Champaign)的科学家进行了一项新研究,发现将石墨烯压碎后,会产生电子“热点”,使其对DNA的敏感度提高1万倍以上。 科学家们表示,褶皱石墨烯可用于多种生物传感应用,以实现快速诊断。研究人员在《自然通讯》杂志上发表了他们的研究结果。 这种传感器可以检测到作为疾病标记的超低浓度分子,这对早期诊断很重要。它非常灵敏,成本低,使用方便,而且以一种新的方式使用石墨烯。 拉希德·巴希尔,伊利诺伊大学厄巴纳-香槟分校生物工程学教授 巴希尔还是伊利诺伊大学厄巴纳-香槟分校Grainger工程学院的院长。 虽然在核酸(如DNA或它的近亲RNA)中寻找癌症序列的迹象的概念并不新鲜,但这是第一个可以识别微量癌症序列的电子传感器,就像那些可能在患者血清中发现的序列一样,不需要额外的处理。 当你患了癌症,某些序列会过度表达。但是我们不需要花费大量的时间和金钱来对某人的DNA进行测序,我们可以检测出那些特定的片段,它们是DNA和RNA中的癌症生物标记,从肿瘤中分泌到血液中。 Michael Hwang,本研究第一作者和博士后研究员,Holonyak微纳米技术实验室,伊利诺伊大学厄巴纳-香槟分校 石墨烯是一种测量一个原子厚度的扁平碳片。这是一种低成本和著名的材料,用于电子传感器。但是到目前为止设计的核酸传感器需要一个被称为扩增的过程,在这个过程中,一个RNA或DNA片段被分离出来,并在试管中复制几次。但这一过程耗时较长,容易出错。 因此,Bashir的团队着手提高石墨烯的传感能力,使样品无需直接放大DNA就可以进行测试。 其他几种提高石墨烯电子性能的方法都采用了精心设计的纳米级结构。伊利诺伊大学厄巴纳-香槟分校(University of Illinois at Urbana-Champaign)的研究团队并没有制造出独特的结构,只是将一张薄薄的塑料片展开,然后将石墨烯覆盖在上面,最后释放出塑料中的张力。这导致石墨烯卷曲并发展成一个皱巴巴的表面。 然后,研究人员测试了褶皱石墨烯在缓冲溶液和未稀释的人类血清中检测DNA和与癌症相关的microRNA的能力。研究小组观察到,与扁平石墨烯相比,这种褶皱石墨烯的性能提高了数万倍。 “这是迄今为止报道的对生物分子电检测的最高灵敏度。在此之前,我们需要样本中成千上万的分子来检测它。有了这个装置,我们可以检测到只有几个分子的信号。”“我原以为灵敏度会有所提高,但没想到会是这样。” 为了找出感知能力增强的原因,机械科学与工程教授纳拉亚纳·阿鲁鲁(Narayana Aluru)和他的研究团队利用全面的计算机模拟来分析褶皱石墨烯的电学特性,以及DNA如何与传感器表面进行物理通信。 研究小组发现,褶皱石墨烯中的空洞表现为电热点,同时充当了一个陷阱,拉出并保留RNA和DNA分子。 该研究的第一作者之一、研究生Mohammad heiran说:“当你将石墨烯揉皱并形成这些凹区时,DNA分子就会与石墨烯表面的曲线和空洞相吻合,这样更多的分子与石墨烯相互作用,我们就能检测到它。”“但当你有一个平坦的表面时,溶液中的其他离子更喜欢这个表面,而不是DNA,因此DNA与石墨烯的相互作用不大,我们无法检测到它。” 此外,当石墨烯被压皱时,在材料中产生的应变改变了它的电学性质,并产生了带隙——电子通过材料时必须克服的能量障碍。这种带隙使褶皱石墨烯对RNA和DNA分子上的电荷反应更灵敏。 这种带隙电势表明,褶皱石墨烯也可以用于其他应用,如纳米电路、二极管或柔性电子器件。 Amir Taqieddin,伊利诺伊大学厄巴纳-香槟分校的研究合著者和研究生 虽然DNA被用于生物分子的折叠石墨烯敏感性的初步演示,但最新的传感器可以用于检测广泛的目标生物标志物。巴希尔的研究团队目前正在对传感器中褶皱的石墨烯进行小分子和蛋白质的测试。 “最终的目标将是为一种手持设备制造墨盒,这种设备可以检测几滴血液中的目标分子,例如,通过监测血糖的方式。”我们的愿景是用一种便携的格式快速测量数据。”Bashir总结道。 这项研究由国家科学基金会通过伊利诺伊州材料研究科学与工程中心提供资金支持。Aluru和Bashir还隶属于贝克曼先进科学技术研究所和伊利诺伊大学厄巴纳-香槟分校材料研究实验室。
  • 《利用石墨烯传感器高灵敏度地检测HIV》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-07-06
    • 在一项新的研究中,来自德国于利希研究中心、荷兰莱顿大学和中国上海大学的研究人员发现了一种优雅而又简单的方法来改进石墨烯传感器的灵敏度。这些所谓的“下一代石墨烯电子生化传感器设备”因具有非常低的电子噪音而能够检测含量非常低的HIV DNA。相关研究结果发表在2017年10月25日的Science Advances期刊上,论文标题为“Biosensing near the neutrality point of graphene”。 石墨烯的丰富电子特性已吸引了人们利用这种二维材料进行电子检测化学物和生物分子的巨大兴趣。莱顿大学莱顿化学研究所资深研究员Wangyang Fu说,“在过去的几年里,我们一直致力于收集石墨烯提供的独特的物理和化学特性,用于开发多功能的电子传感器设备。然而,制造实际的石墨烯电子传感器很大程度上依赖于我们理解和维持低水平电子噪音的能力。我们认为这是限制这种传感器分辨率的根本原因。” 通过与来自于利希研究中心和莱顿大学的同事们合作,Fu报道了一种低噪音的石墨烯电子传感器,实现方式就是在这种传感器的中性点(neutrality point)附近对它进行操作,这是因为他发现在中性点附近,能够让它的电子噪音最小化。 在这项研究中,Fu和同事们也对低噪音石墨烯芯片在生化检测上的应用进行了概念验证。为此,他们利用他们的传感器检测HIV DNA。他们选择一个HIV基因的片段作为实验对象。这种单链DNA片段结合到石墨烯表面上。论文共同作者Lingyan Feng和Dirk Mayer说道,“首先利用一个嵌二萘(pyrene)连接基团将一种单链PNA分子---一种合成的DNA变体---非共价地固定在石墨烯表面上。随后,一种互补的DNA链能够结合上来。我们能够在一种非常低的噪音水平下非常灵敏地检测这种杂交事件。” 论文共同作者Andreas Offenh usser和Hans-Joachim Krause总结道,“开发低噪音的可携带的可靠的石墨烯传感器用于POCT检测正处于石墨烯电子器件和生物传感器领域的前沿。这可能对更加广泛的医学诊断领域产生巨大的社会影响。”