《垃圾渗滤液的处理现状及发展方向分析》

  • 来源专题:农业立体污染防治
  • 编译者: 季雪婧
  • 发布时间:2018-12-17
  • 摘要:垃圾渗滤液处理工作难度大,其成分较为复杂,面对严重危害。当前,垃圾渗滤液处理技术在逐渐改善,新技术的产生能更好的促使现代环境保护工作的稳定发展。所以文章中,基于对垃圾渗滤液处理现状的分析,探讨其具体的发展方向。

    关键词:垃圾渗滤液;处理现状;发展方向

    垃圾渗滤液水质都较为复杂,其存在高浓度的有机物、重金属盐等,这些物质不仅会给土壤、地表水源带来很大污染,也会造成较大的地下水污染。加强对垃圾渗滤液中物质的去除,一般都在使用生物法来进行处理,但是还无法获得更理性的效果,实际运行成本高,所以,给予新技术的研究十分必要。

    一、垃圾渗滤液的危害

    垃圾渗滤液为一种具有高浓度的有机污染物,作为有机废水,其水质成分较为复杂,含有的氨氮种类多、浓度高。基于对渗透方式的应用,垃圾渗滤液危害周边环境,特别是垃圾渗滤液的流量、速度、垃圾的性质以及堆放的时间等,都与其污染程度存在很大联系。我国的垃圾渗滤液处理技术在当前还处于初级发展阶段,处理过程中需要的费用高,管理能力还需要进一步完善。所以,当水质受到垃圾渗滤液污染后,将面对较大的处理难度,其污染的水质也无法发挥其价值,从而给人们的身体健康发展带来影响。

    二、垃圾渗滤液处理方法

    (一)生物法

    第一,好氧生物处理。该方法主要为氧化沟、曝气氧化塘、生物转盘、硝化与反硝化等,能有效降低锰、铁等金属。如果将有机物转化为污泥,其比例和污泥负荷有关,在这种情况下应用污泥处理工艺,总体上较为复杂,需要的费用也更高。好氧生物处理垃圾渗滤液,要保证水质达到标准很难,需要更大的占地面积,不符合脱氮要求。一般情况下,好氧生物处理方法为活性污泥法中的常见方式,只有提高污泥的浓度才能降低有机负荷,但是水质适应性较差。

    第二,厌氧生物处理方法,在处理中的负荷较高,消耗低,能够达到有机物的积极溶解。比如:上流式厌氧污泥床、厌氧流化床、厌氧复合反应器等,其中的上流式厌氧污泥床启动期较短,具有良好的耐冲击性。其中的厌氧折流板反应器也能对混合废水可生化性进行改善。

    第三,厌氧-好氧结合的生物氧化处理工艺。该工艺在实际应用期间,其具备较高的处理效率,实际运行费用比较低,能够有效对好氧处理难度进行弥补。同时,好氧工艺也能满足相关工艺的建设需求,其中的厌氧处理要在好氧处理工作前期置入,能达到COD的减少,避免好氧单元负荷、曝气系统规模的增加,为总体建设和运行发挥节约作用,确保好氧单元处理效率的提升,实现表面活性物质的积极分解,从而有效减少好氧单元泡沫。

    (二)物理化学法

    物理化学法的组成为物理过程和化学过程的结合。比如:吸附、化学氧化、超声、离子交换等方法。混凝土处理垃圾渗滤液,选择400毫克的聚合氧化铝、焦炭等,能给予重金属、色度的合理去除。使用硅藻土对人工模拟的垃圾渗滤液方式进行处理,可以为其投入100克硅藻土过滤层,在PH数值达到7的时候,能够有效去除COD、TN。

    利用Fenton试剂对垃圾渗滤液处理,能有效去除其中的有机物,特别是一些无法降解的有机物,获取的去除效果都更好,在良好条件下,对COD的去除效率会达到70%以上。物化法运行更稳定,其占有的空间小,对废水存在较高的适应性。在近几年,垃圾渗滤液处理领域更为广泛,但是,实际运行成本较高,能耗较小,给予单一处理还无法满足我国的排放标准。

    (三)深度处理技术

    垃圾渗滤液处理技术的发展方向主要表现为两个方面。第一,在膜处理技术实际应用中,是对浓缩液处理技术的改进和应用。第二,加强对新型、高效深度处理技术的应用。其中的膜处理技术是将现有的处理技术作为基础条件,增强深度处理效果,并在现有技术条件下给予改进和优化,确保在最大程度上提升浓缩液处理技术水平。新型、高效的深度处理技术,其重点是对垃圾渗滤液处理技术进行创新,对一些不容易降解的有机物进行清除,加强对新技术的研究,都是现代化技术研究的重点。

    三、垃圾渗滤液处理技术的发展方向

    垃圾渗滤液处理技术在当前发展中,已经经历了三个阶段。分别为土地处理——物理化学处理、生物处理——多种技术的结合。根据当前垃圾渗滤液处理技术发展现状的分析,生物处理和物理化学处理工作为当前的主要技术,实现生物处理和物理化学处理结合工艺十分必要。随着环境发展趋势的日益严重,地方污染排放标准逐渐出台,加强了对现代物理化学技术、高效生物处理技术的研究。同时,对各项处理技术进行整合,能为运行管理工作提供方便,确保其满足现代的排放标准,尤其是新型集成式联合处理技术的应用,在降低垃圾渗滤液处理费用条件下,也能在整体上获得良好的垃圾渗滤液处理效果,从而为垃圾渗滤液处理技术的有效应用指明正确方向。

    总结

    基于以上的分析和探究,垃圾渗滤液的产生,多是因为在堆放和填埋垃圾过程中,在降雨、地表径流、微生物分解以及地下水浸泡中滤出的污水,在垃圾处理中为一种二次污染。垃圾渗滤液作为当前卫生填埋的主要方向,还需要给予进一步研究。

相关报告
  • 《垃圾渗滤液处理问题反思与讨论》

    • 来源专题:水体污染治理
    • 编译者:王阳
    • 发布时间:2019-12-31
    • 据统计,全国城市垃圾堆存累计侵占土地超过5亿平方米,每年的经济损失约300亿元,累计堆放最高达70亿吨。大部分垃圾填埋场由于没有处理设施或者设施无法发挥作用,溢出的渗滤液排入河流和周围农田,同时雨季大量垃圾渗滤液进入地下,周边水体遭到严重污染。当前我国垃圾渗滤液日均产生量已达十几万吨,对其进行达标处理已刻不容缓。 关键词:垃圾渗滤液;物化法;生化法;土地法 经过近十几年的努力,我国已经建成了数百座垃圾渗滤液处理项目,对改善自然环境起到了重要作用。但在实际运行过程中,大多数渗滤液处理工程仍存在许多问题,如浓缩液问题至今仍没有很好的解决办法,大多排入城市污水处理厂,给城市污水处理厂运行带来安全隐患。高昂的运行成本给地方财政带来了不小的压力,二次污染问题并没有彻底解决,妥善解决这些问题具有重要意义。 渗滤液处理发展方向 1.提高渗滤液处理率。我国大部分城市、乡镇已经建设渗滤液处理工程,但由于各种原因,有相当一部分渗滤液处理设施的处理能力达不到设计规模,还有一些城市根本就没有建渗滤液处理设施,这些未经任何处理的渗滤液原液进入城市污水处理厂,增大了污水厂的负荷,甚至导致污水厂出水水质不能达标排放。从保护环境的角度出发,今后应继续加强渗滤液处理设施的建设,提高渗滤液处理率,确保所有的渗滤液经过处理后达标排放。 2.节省能耗。目前我国采用的渗滤液处理技术最大的缺点是能耗高,高的电耗带来的是高昂的运行成本,一方面给地方财政带来巨大的压力,另一方面也不符合我国的节能减排政策,节省能耗是未来渗滤液处理发展的重点。 3.开发新工艺。相比于其他行业污水处理,应用于垃圾渗滤液处理的成熟可靠工艺较少,目前普遍得到认可的仅有“生化处理+深度处理”工艺,其他如“芽孢杆菌—高效生物处理+催化氧化”工艺和“高效蒸发处理”工艺也有应用,但工程实例较少。 垃圾渗滤液处理工艺应具有简单化、多样化、成本低的特点,且要适应各种外部条件的变化。进一步完善垃圾渗滤液处理相关的标准、规范。提高渗滤液处理国产化设备占有率。继续探寻解决浓缩液难于处理的难题。
  • 《2020年中国生物天然气行业市场现状及发展前景分析》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-08-12
    • 2019年12月4日,据国家能源局官网,近日,国家发展改革委、国家能源局、农业农村部、财政部、生态环境部、自然资源部、住房城乡建设部、应急管理部、人民银行、税务总局联合印发了《关于促进生物天然气产业化发展的指导意见》,到2025年年产量超过100亿立方米,到2030年超过200亿立方米。 1、生物天然气原材料以秸秆为主 我国生物天然气是以农作物秸秆、畜禽粪污、餐厨垃圾、农副产品加工废水等各类城乡有机废弃物为原料,经厌氧发酵和净化提纯产生的绿色低碳清洁可再生的天然气,同时厌氧发酵过程中产生的沼渣沼液可生产有机肥。 发展生物天然气,规模化处理有机废弃物,能有效解决粪污、秸秆露天焚烧等引起的环境污染问题,保护城乡生态环境。中国农业大学教授程序算了一笔账:假设200亿立方米生物天然气完全由大型沼气—生物天然气项目生产,意味着能够对约3亿吨秸秆和2亿吨畜禽粪便作无害化处理和资源化利用。 即从数据模型来看,生物天然气是秸秆和畜禽粪污按照 3:2比例进行配比产生,由此生物天然气的原材料主要以秸秆为主,畜禽粪污为辅。 2、粮食大丰收 秸秆产量增加 根据国家统计局的数据显示,2011-2019年我国粮食产量整体呈现波动的态势,2015年后粮食产量变化波动浮动不大。2019年我国粮食产量达到66384.34万吨,同比增加0.9%。 注:2013、2015年产量增速为3%、3.3%。 农谚说“斤粮斤草”,生产1斤粮食的同时要产出1斤多秸秆,我国秸秆产量和粮食产量呈现正向的相关关系。数据显示,2011-2018年我国秸秆总量整体呈上升趋势,但上升幅度较为微弱,这主要与农作物播种面积较为恒定,不可能出现大的波动有关。 2011年我国秸秆产量为8.39亿吨,前瞻根据秸秆产量的历史数据并结合2019年粮食产量数据,初步估算2019年我国的秸秆产量约为8.63亿吨。 3、秸秆供应区域分布在北方平原地区 我国现有秸秆供应量最大的省份是山东省、黑龙江、河南省、安徽省等。由下图可知,秸秆收集难度最小的是黑龙江、内蒙、河南、安徽等。 4、秸秆生产生物天然气的生产模型分析 生物天然气通过对种植、养殖所产生的有机废弃物资源进行处理,变废为宝地生产出能够为农业项目带来更多经济效益的能源资源产品和有机肥料。 与沼气类似,生物天然气的副产物可以加工成为高品质的生物有机肥,一方面进一步对发酵产生的沼渣沼液进行利用,减少了项目对农村生态环境产生二次污染;另一方面高品质的生物有机肥能够提高农产品的口感、品相,是发展高端农业的主要肥料。 生物天然气是在传统沼气发展的基础上的提档升级,改变了传统沼气项目自产自销式的利用局限性,将沼气进一步提纯获得生物天然气,可以最大程度的提升应用渠道和场景。 一方面,可以利用生物天然气进行热电联产,获得高品阶的电力能源,并且可以将热电联产过程中的热能供给大棚种植中的保温系统,实现了能源资源的梯级化利用。 另一方面,因为生物天然气组成成分、热值等指标与传统天然气类似,也可以将生产的生物天然气通过并入燃气网、罐装出售等模式,用于城乡生活燃气、车船用气等,大大提高了消纳能力。 利用生物处理技术以农作物秸秆为主要原料进行生产,可通过4~5公斤青质秸秆发酵获得约1立方米的沼气,再通过提纯和净化使其成份、热值与常规天然气成份接近,最终获得0.5立方米的生物天然气产品,同时副产3公斤左右的有机肥原料。 若按照我国当前天然气市场价格2.5元/立方、有机肥500元/吨的平均价格来计算,则每处理5公斤秸秆,生物天然气项目可以增加2.75元的收益。