《Nature | 胆盐水解酶酰基转移酶活性扩大了胆汁酸的多样性》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-02-08
  • 2024年2月7日,密歇根州立大学的研究人员在Nature在线发表题为Bile salt hydrolase acyltransferase activity expands bile acid diversity的文章。

    胆汁酸 (BA) 是胆汁中的类固醇去污剂,由于其抗菌特性,有助于脂肪和脂溶性维生素的吸收,同时塑造肠道微生物组。

    该研究确定了肠道微生物群负责 BA 代谢机制的酶,该机制涉及氨基酸与 BA 酰基位点的结合,从而产生多种微生物共轭胆汁酸 (MCBA)。研究人员发现这种转化是由胆盐水解酶(胆盐水解酶/转移酶,BSH/T)的酰基转移酶活性介导的。产气荚膜梭菌BSH/T在提供各种氨基酸和牛磺胆酸盐、糖胆酸盐或胆酸盐时迅速进行酰基转移,在pH值为5.3时达到最佳水平。产气荚膜梭菌BSH/T的氨基酸偶联是多种多样的,包括除脯氨酸和天冬氨酸以外的所有蛋白质氨基酸。MCBA的产生在肠道细菌中广泛存在,使用菌株特异性氨基酸。具有相似 BSH/T 氨基酸序列的物种具有相似的偶联谱,并且有几个BSH/T等位基因与偶联多样性的增加相关。BSH/T的三级结构定位和诱变实验表明,活性位点结构影响氨基酸选择性。这些MCBA产品具有抗菌特性,其中氨基酸疏水性越大,抗菌活性越强。

    MCBAs的抑制浓度达到了在哺乳动物肠道中天然测量的浓度。喂给小鼠的MCBA进入肠肝循环,其中肝脏和胆囊浓度根据偶联氨基酸而变化。对人类粪便样本中的 MCBA 进行定量表明,它们的浓度等于或大于二级和初级 BA,并且在减肥手术后降低,从而支持 MCBA 作为 BA 池的重要组成部分,可以通过胃肠道生理学的变化来改变。总之,BSH/T 固有的酰基转移酶活性极大地丰富了 BA 化学,创造了一组以前被低估的代谢物,有可能影响微生物组和人类健康。

相关报告
  • 《Science | 进化引导的反式酰基转移酶聚酮合成酶工程》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-03-28
    • 2024年3月21日,苏黎世联邦理工学院的研究人员在Science上发表了题为Evolution-guided engineering of trans-acyltransferase polyketide synthases的文章。 细菌多模块聚酮合成酶(pks)是一种巨大的酶,可以产生广泛的治疗上重要但合成上具有挑战性的天然产物。通过改造这些酶,可以实现聚酮结构的多样化。然而,尽管教科书式顺酰基转移酶(cis-AT) PKSs取得了成功,但定制如此大型的装配线仍然具有挑战性。与教科书上的PKSs不同,trans-AT PKSs具有非凡的PKS模块多样性,并且通常演变成混合PKSs。 在这项研究中,研究人员分析了氨基酸的共同进化,以确定产生功能性PKSs的共同模块位点。研究人员利用这个位点插入和删除了不同的PKS部分,并从不同的途径和两个细菌生产者中创建了22个工程trans-AT PKS。该工程方法的高成功率突出了更广泛的适用性,以产生复杂的设计聚酮。
  • 《分子植物卓越中心揭示水稻糖基转移酶影响代谢流进而调控粒型与抗逆的新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:zhangyi8606
    • 发布时间:2020-10-11
    • 5月26日,国际学术期刊《自然-通讯》(Nature Communications)在线发表了中国科学院分子植物科学卓越创新中心林鸿宣研究组的研究成果,题为UDP-glucosyltransferase regulates grain size and abiotic stress tolerance associated with metabolic flux redirection in rice。该研究工作报道了水稻糖基转移酶影响代谢流重新定向,进而同时调控水稻籽粒大小与抗逆性的新机制。 粒型是影响水稻产量的主要因素之一,同时水稻产量经常遭受干旱、高盐和高温等非生物胁迫的影响,如何提高水稻产量的同时增强水稻抗逆性是对科研人员和育种工作者的挑战课题。植物需不断调整体内代谢流以适应不同发育时期和生长环境,但在作物中对此了解甚少。 林鸿宣研究组通过图位克隆的方法定位克隆到一个同时调控水稻粒型与抗逆性的QTL GSA1 (Grain Size and Abiotic stress tolerance 1)。GSA1是粒型与抗逆性的正向调控因子,过表达GSA1增加水稻籽粒大小和粒重,同时提高水稻对高盐、干旱及高温的抗性。核苷酸多态性分析显示,GSA1在非洲野生稻驯化为非洲栽培稻以及亚洲野生稻驯化为粳稻的过程中受到人工选择。GSA1编码一个水稻糖基转移酶UGT83A1,体外实验证实GSA1具有广谱的糖基转移酶活性,以尿苷二磷酸(Uridine diphosphate,UDP)为糖基供体,以山奈酚、柚皮素及槲皮素等黄酮类代谢物为糖基转移受体,调控水稻体内黄酮糖苷谱,间接影响黄酮介导的生长素极性运输及生长素相关基因表达量,最终通过影响细胞分裂和细胞增殖而调控水稻粒型。同时GSA1也可以将松柏醇、对香豆醇及芥子醇等木质素单体作为糖基转移受体,进而调控木质素含量,这可能也是调控水稻粒型的原因。GSA1CG14(非洲稻位点)中位于Plant Secondary Product Glycosyltransferase (PSPG)保守结构域内的氨基酸变异A349T导致GSA1CG14结合UDP的能力比GSA1WYJ(亚洲稻位点)明显下降,糖基转移酶活性显著降低,而位于非保守域的氨基酸变异A246V则对底物结合及糖基转移酶活性无影响。木质素合成途径以及黄酮代谢途径是苯丙烷通路的重要分支。进一步研究表明,逆境胁迫下GSA1参与代谢流从木质素合成途径重新定向于黄酮糖苷合成途径,木质素合成途径下调而黄酮糖苷包括花青素合成相关通路上调,导致水稻抗逆性的增强。过量表达GSA1WYJ显著增加逆境胁迫下黄酮糖苷及花青素的含量,引起水稻抗逆性增强。而敲除GSA1造成逆境下代谢流重新定向的紊乱,黄酮糖苷合成受阻,水稻抗逆性减弱。 该研究揭示了糖基转移酶通过调控代谢流重新定向进而同时调控水稻粒型与抗逆性的新机制,为培育高产高抗作物新品种提供了有价值的基因资源。 林鸿宣研究组博士后董乃乾为论文第一作者,单军祥、叶汪薇等对该工作做出了贡献,该研究得到分子植物卓越中心研究员王勇、博士孙雨伟的大力帮助。该工作获得科技部、中国科学院、国家自然科学基金的资助。