《促进Au3+还原催化性能,通过Au/ cuo2催化剂进行优先CO氧化。》

  • 来源专题:可再生能源
  • 编译者: pengh
  • 发布时间:2018-05-16
  • 采用不同的方法制备了一系列的Au/ cuo2催化剂,以考察Au对一氧化碳的优先氧化作用的促进作用。利用一系列技术对催化剂的组成、结构、基本价和还原行为进行了系统表征。发现催化剂由液相还原沉积(AuCeCu-lprd)方法低温活性最高和最宽的温度窗口的完整的公司转换和催化剂,归因于高装载量的非盟,Au纳米粒子的小尺寸,良好的支持和非盟的存在还原性+从Au3 +减少表面上。此外,AuCeCu-lprd催化剂显示满意稳定在115°C 80 h和良好的抗水。

    ——文章发布于2018年5月7日

相关报告
  • 《大化所在金属氧化物催化剂设计方面取得新进展》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:wukan
    • 发布时间:2018-03-09
    • 近日,大化所碳资源小分子与氢能利用创新特区研究组(DNL19T3)孙剑、俞佳枫副研究员团队利用火焰喷射法(Flame Spray Pyrolysis , FSP)的高温淬火过程,将金属氧化物中的晶格氧锁定在亚稳态,从而大幅增强了晶格氧的活性,使CO氧化反应速率比传统催化剂的反应提高了10倍。相关研究成果已在线发表于《化学科学》(Chemical Science)。 由氧化物中晶格氧参与的氧化还原循环广泛存在于催化氧化反应中。其中,晶格氧的释放速率是反应的速控步骤,因此,增强晶格氧的活性,从而加速氧化还原循环,是促进催化氧化反应的重要手段。该团队巧妙地利用高温淬火的方法,在保证氧化物晶体稳定形成的同时,削弱了氧化物中金属—氧之间的相互作用,使晶格氧处于过饱和的亚稳定状态。新鲜制备的Ce-Zr固溶体氧化物中未发现氧空位,亚稳态的晶格氧可稳定存在,而在相对温和的条件下(如低温还原、真空处理、担载金属等)即可释放出大量活泼氧,为CO催化氧化反应提供更多的活性位。研究发现,与共沉淀法制备的Ce-Zr氧化物相比,采用FSP方法制备的氧化物所能提供的氧空位数量增加了19倍。该研究成果为新型氧化物催化材料的设计和应用提供了新思路。
  • 《Nat.Commun:双中心单原子合金催化剂促进电催化CO2还原中的碳氢化合物形成》

    • 来源专题:先进材料
    • 编译者:李丹
    • 发布时间:2023-11-12
    • 来自材料牛 一、 导读        近年来,在CO 2 氢化生成能量密集型碳氢化合物分子(HCs)的催化反应中,以CO 2 加氢而不产生H 2 为特征的电催化CO 2 还原反应(CO 2 RR)备受关注。铜(Cu)可以高效的催化HCs(特别是C2+)形成的元素,因为它对氢(ΔE H )和羰基(ΔE CO )的结合能都是最佳的,而ΔE H 和ΔE CO 是CO 2 RR过程中普遍存在的中间体。目前,研究发现金属合金化是一种广泛采用的加速CO 2 RR同时合理抑制竞争性析氢反应(HER)的策略。不幸的是,大多数非贵金属组成的Cu合金催化剂通过削弱ΔE CO 从而表现出更倾向甲酸盐或CO生成的选择性。因此,违背了使用 Cu 作为催化金属以实现CO 2 深度加氢的最初目的。目前,部分研究学者提出通过在元素周期表中加入位于Cu左侧的铂族金属(PGMs)来直接解决上述限制问题,因为铂族金属将为CO提供大量的结合能。然而根据动力学分析表明,HER在PGM基团上的反应仍然比CO 2 RR要快的多。因此,从设计PGM-Cu催化中心本身的角度出发,合理设计一种PGM-Cu界面的替代结构实现通过CO 2 RR高效且选择性地生成HCs,并从本质上限制了HER是CO 2 RR最关键的研究之一。 二、 成果掠影    近日,克莱姆森大学Ming Yang和马萨诸塞大学FangLin Che等人提出了一种巧妙的设计,将原子分散的铂族金属物种锚定在多晶和形状可控的Cu催化剂上(PGM 1 -Cu SAAs),该催化剂能通过CO 2  RR来高效的催化碳氢化合物的形成。相关的研究成果以“Dual-site catalysts featuring platinum-group-metal atoms on copper shapes boost hydrocarbon formations in electrocatalytic CO 2 reduction”为题发表在Nature Communications上。 三、 核心创新点 1、通过一种巧妙设计成功合成出多晶和形状可控的Pt 1 Cu单原子合金(SAAs)纳米催化剂。 Pd 1 Cu SAA 能高效通过 CO 2  RR 轻松地形成CH4和 C 2 H 4 ,同时抑制不必要的析氢反应的发生。值 得注意的是,具有类似金属配方但包含小铂或钯簇的合金将无法实现这一目标; 2、通过形状控制的催化剂合成、原位反应研究和DFT计算分析,当铜表面有相当数量的CO-Pd 1 基团时,CO氢化成CHO或CO-CHO偶联成为Cu(111)或Cu(100)上的主要途径之一, 另外通过Pd-Cu双位点途径选择性产生CH 4 或C 2 H 4 四、 数据概览 图1 多晶 PGM-Cu SAA 的形态和结构分析。a多晶Cu催化剂的FESEM图像及其相应的EDS元素图。b Pd 1 Cu SAA的像差校正 HAADF-STEM 图像。圆圈突出显示单原子Pd。c Pd K-edge EXAFS  ©2023 The Author(s) 图2 电催化CO 2 还原活性比较。多晶 Cu、多晶Pd 1 Cu SAA和形状受控的Pd 1 Cu SAA在不同电压(相对于RHE)下的a C 2  H 4 和b CH 4 的部分电流密度。c CO 2 还原FE% 和电流密度的比较 ©2023 The Author(s) 图3 DFT计算Pd 1 Cu SAA中单原子Pd对调节CO吸附和HER的作用。a , b分别显示CO 在Cu、Pd 1 Cu和Pd的 (100) 和 (111) 面上的吸附能。c , d是 HER 在Cu、Pd 1 Cu和Pd 的 (100) 和 (111) 面上的自由能图  ©2023 The Author(s) 图4 作为扫描电位函数的气态产物实时分析。使用a Cu NP 和 b Pd 1 Cu SAA还原CO 2 时,通过质谱仪检测的循环伏安图和实时碳氢化合物产物分布  ©2023 The Author(s) 图5 CO 2 还原过程中在Cu上的Pd对产物分布的影响。a Cube-Cu 和b Octa-Cu的SEM 图像。c多晶和形状控制的Cu纳米粒子和 Pd 1 Cu SAA的粉末 X 射线衍射图。d Pd K-edge EXAFS(阴影线)和曲线拟合(点)。e CH 4 和C 2 H 4 的FE分布 ©2023 The Author(s) 图6 形状控制的Cu和Pd 1 Cu SAA的原位ATR-SEIRAS。O 2 饱和0.5 M KHCO 3 电解质中Pd 1 Cu SAA和Cu在-0.8 V下作为时间函数收集的较高波数处的光谱a 和较低波数处的光谱b ©2023 The Author(s) 图7 Pd1Cu SAA中单原子 Pd 对反应自由能和活化能垒的DFT计算。a ?Cu(111)、Pd 1 Cu(111)和CO- Pd 1 Cu (111)上CO 加氢(H ?+ CO ?→ CHO +)的反应自由能和活化势垒以及相应的IS、TS 和 FS结构。b C-C偶联(CO  ?+ CHO  ?→ OCCHO  ?+ )在Cu(111)、Pd 1 Cu(111)和CO- Pd 1 Cu (111)上的反应自由能和活化势垒以及相应的IS、TS 和 FS结构 ©2023 The Author(s) 五、 成果启示   综上所述,这项工作提出了一种巧妙的Pt 1 Cu单原子合金 (SAAs) 纳米催化剂的策略。铂族金属虽然在传统上不利于电催化CO 2 加氢,但现在可以作为Cu基体上的合金单原子来利用,以显著地提高反应效率和选择性地产生碳氢化合物,这是许多其他铜基合金无法实现的反应目标。在汽车电气化的大趋势下,铂族金属重型汽车催化剂逐渐被淘汰,这一新发现为铂族金属催化剂应用在全球市场上提供了独特的机会。