《Cell | 神经元JAK1抑制肺炎》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2023-12-24
  • 2023年12月21日,西奈山伊坎医学院Brian S. Kim通讯在Cell发表题为Sensory neurons promote immune homeostasis in the lung的文章 ,发现JAK1信号在肺感觉神经元中具有免疫调控作用。

    该研究引入了一种表达与过敏性疾病相关的人JAK1 gain of function(GoF)突变的小鼠模型。这些小鼠有类似过敏性皮炎的自发性皮肤炎症的表型,具体表现为免疫细胞浸润和表皮增厚。然而,它们的肺部在基线状态下与野生型小鼠相比没有炎症。这些发现表明JAK1激活在皮肤中促进炎症,但在肺部中没有此效应。尽管突变小鼠没有自发性肺部炎症,但用真菌过敏原刺激它们却可以引发比野生型小鼠更强烈的过敏性肺部表现。令作者惊讶的是,将JAK1突变限制在基质细胞中减少了过敏原诱导的肺炎,转录组分析显示这抑制了与哮喘相关的基因表达。因此,与免疫细胞不同,基质细胞中的JAK1激活使肺部对炎症产生抵抗。

    作者查阅文献发现,感觉神经元可以通过释放神经肽抑制肺部炎症。作者发现对肺感觉神经元的药物破坏加剧了过敏原诱导的炎症。选择性地消融迷走神经而不是脊神经神经元也加重了炎症。综合这些结果,迷走神经感觉神经元至关重要地抑制过敏性肺炎症状。进一步分析显示,大多数迷走感觉神经元表达Jak1。在感觉神经元中选择性敲除Jak1的小鼠在过敏原刺激后肺部炎症更加剧烈。具体分析发现,在Jak1缺失小鼠的迷走神经节中,编码CGRPβ的Calcb表达减少。作者从体外分析计算预测JAK1下游的STAT6调控了Calcb的转录。因此,感觉神经元Jak1控制与肺炎症相关的神经肽表达。

    鉴于ILC2在过敏性气道疾病中的作用,作者测试了CGRPβ是否直接调控ILC2。实验中,在存在CGRPβ的情况下刺激肺ILC2,只能导致较少的细胞因子产生。此外,额外CGRPβ处理抑制了ILC2的扩增和小鼠的肺炎。相反,阻断CGRPβ信号加重了炎症。因此,CGRPβ是一种抑制ILC2并限制过敏性气道疾病的神经源性神经肽。在证明感觉神经元Jak1丧失会加剧炎症后,作者测试了定向增强肺内神经元JAK1是否具有免疫保护作用。作者将编码人类JAK1 GoF突变的病毒递送到呼吸道,以实现迷走感觉神经元的选择性转染。然后,这些小鼠呈现了对过敏原诱导的肺炎的显著抑制。同样,仅在感觉神经元中有条件地表达突变也能保护小鼠免受气道炎症疾病的侵害。综合这些结果表明,神经元内在的JAK1信号通过调节CGRPβ等调节性神经肽促进肺部免疫稳态。

    总之,作者利用新的小鼠模型揭示了JAK1信号的组织特异性和细胞内功能。这些发现强调了神经免疫通路在炎症中的新兴和重要性,并提出了根据靶向特定细胞群的方式优化JAK抑制剂治疗的新策略。



  • 原文来源:https://www.sciencedirect.com/science/article/pii/S0092867423013132
相关报告
  • 《Cell:揭示新冠肺炎导致嗅觉丧失机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-02-20
    • 在一项新的研究中,来自美国哥伦比亚大学和西奈山伊坎医学院等研究机构的研究人员发现了一种可能解释为何COVID-19患者会失去嗅觉的机制。具体而言,他们发现感染大流行病病毒SARS-CoV-2会间接调低嗅觉受体(OR)的作用,即鼻子中神经细胞(即神经元)表面的蛋白,可以探测与气味有关的分子。相关研究结果于2022年2月1日在线发表在Cell期刊上,论文标题为“Non-cell autonomous disruption of nuclear architecture as a potential cause of COVID-19 induced anosmia”。 这项新研究还可能阐明COVID-19对其他类型脑细胞的影响,以及COVID-19的其他挥之不去的神经系统影响,如“脑雾”、头痛和抑郁。 实验表明这种病毒在嗅觉组织的神经元附近的存在带来了能感知并对抗感染的免疫细胞---小胶质细胞和T细胞--的涌入。这些作者说,这些免疫细胞释放称为细胞因子的蛋白,改变了嗅觉神经元的遗传活动,即使这种病毒不能感染它们。根据他们的理论,免疫细胞的活动在其他情况下会迅速消散,而在大脑中,免疫信号的持续存在会降低表达嗅觉受体的基因的活性。 论文共同通讯作者、纽约大学朗格尼医学中心微生物系教授Benjamin tenOever博士说,“我们的发现为COVID-19的嗅觉丧失提供了第一个机制上的解释,而且这可能是新冠长期后遗症(long COVID-19)生物学的基础。除了tenOever团队的另一项研究(Immunity, 2021, doi:10.1016/j.immuni.2021.01.017)之外,这项研究还表明,感染人体中不到1%细胞的大流行病毒SARS-CoV-2如何能够在如此多的器官中造成如此严重的损害。” 结构变化 这些作者说,COVID-19感染的一个独特症状是嗅觉丧失,没有像感冒病毒等其他感染那样的鼻塞。在大多数情况下,嗅觉丧失只持续几周,但对于超过12%的COVID-19患者来说,嗅觉功能障碍持续存在,表现为嗅觉能力持续下降(嗅觉减退)或一个人对同一气味的感知方式发生变化(嗅觉倒错)。 为了深入了解COVID-19诱导的嗅觉丧失,这些作者探索了SARS-CoV-2感染在金仓鼠和从23例人类尸体上提取的嗅觉组织中的分子后果。仓鼠代表了一个很好的模型,它们是比人类更依赖嗅觉的哺乳动物,而且更容易受到鼻腔感染。 这些研究结果建立在多年来的发现之上,即开启基因的过程涉及复杂的三维关系,其中DNA片段根据关键信号或多或少地被细胞的基因读取复合物所访问,一些DNA链形成环结构而产生长距离的相互作用,使基因得以稳定读取。一些基因在开放和活跃的染色质“区室”---容纳基因的蛋白复合物--中运作,而其他染色质区室是紧凑和封闭的,是“核结构(nuclear architecture)”的一部分。 在这项新的研究中,实验证实,SARS-CoV-2感染和对其的免疫反应,降低了影响嗅觉受体形成的染色体DNA链的开放和活性,以及形成环结构激活基因表达的能力。在仓鼠和人类嗅觉神经组织中,这些作者检测到嗅觉受体表达的持续和广泛的下调。他们发布的另一项研究表明嗅觉神经元连接到敏感的大脑区域,鼻腔内持续发生的免疫细胞反应可能影响情绪和清晰思考的能力(认知),这与新冠长期后遗症相一致。 在仓鼠身上记录的实验显示,在可能影响嗅觉的短期变化自然恢复后,嗅觉神经元受体的下调仍然存在。这些作者说,这表明COVID-19对基因表达的染色体调控造成了更持久的破坏,代表了一种“核记忆(nuclear memory)”的形式,即使在SARS-CoV-2被清除后也可能阻止嗅觉受体转录的恢复。 tenOever说,“意识到嗅觉依赖于染色体之间‘脆弱的’基因组相互作用具有重要意义。如果嗅觉基因表达在每次免疫系统以某些方式破坏染色体间的接触时都会停止,那么失去的嗅觉可能作为‘煤矿中的金丝雀’,在其他症状出现之前提供SARS-CoV-2病毒正在破坏脑组织的任何早期信号,并提出治疗的新方法。” 在下一步,这些作者正在研究用类固醇治疗新冠长期后遗症的仓鼠是否能抑制破坏性的免疫反应(炎症)以保护核结构。  参考资料: Marianna Zazhytska et al. Non-cell autonomous disruption of nuclear architecture as a potential cause of COVID-19 induced anosmia. Cell, 2022, doi:10.1016/j.cell.2022.01.024. Mechanism Revealed Behind Loss of Smell with COVID-19 https://nyulangone.org/news/mechanism-revealed-behind-loss-smell-covid-19
  • 《Science | JAK抑制剂联合PD-1阻断治疗非小细胞肺癌》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2024-06-22
    • 2024年6月21日,宾夕法尼亚大学Andy J. Minn、E. John Wherry共同通讯在Science发表题为Combined JAK inhibition and PD-1 immunotherapy for non–small cell lung cancer patients的文章,探索了一种新的方法,通过结合JAK抑制剂(JAKi)的延迟给药,提高了PD-1免疫疗法对非小细胞肺癌(NSCLC)患者的疗效,有可能克服对检查点阻断的耐药性并改善临床结果。 在临床前小鼠模型中,检查点阻断开始后延迟给予JAKi改变了增殖的CD8 T细胞的组成,并增强了免疫疗法的疗效。这一发现为高PD-L1表达的转移性NSCLC患者的2期临床试验奠定了基础。临床试验显示了有希望的结果,总有效率为67%,中位无进展生存期为23.8个月。重要的是,一些最初对单独抗PD-1治疗没有反应的患者在添加JAKi后表现出临床改善。 对CD8 T细胞亚群的详细分析显示,JAK抑制调节增殖T细胞的组成。研究人员观察到JAK抑制后祖细胞样、效应记忆和耗竭的CD8 T细胞克隆型的协调变化。JAK抑制后的患者反应与表现出分化灵活特征的CD8 T细胞克隆型的扩增有关。作者发现,在抗PD-1治疗中加入JAKi与CD8 T细胞可塑性增加有关。这种增强的可塑性可以使针对肿瘤细胞的免疫反应更加多样化和适应性更强,有可能有助于改善临床结果。 然而,并非所有患者都从联合治疗中受益。研究表明,对联合抗PD-1免疫疗法和JAK抑制无效与持续炎症有关。在无反应的患者中,IFN信号似乎对JAK抑制不敏感,导致晚期CD8 T细胞分化和治疗失败。这项研究为细胞因子信号传导、T细胞分化和抗肿瘤免疫反应之间的复杂相互作用提供了有价值的见解。通过靶向持续性IFN信号和慢性炎症的免疫抑制作用,JAK抑制可能增强检查点阻断免疫疗法在NSCLC和潜在的其他癌症类型中的疗效。 该研究的发现为改善癌症免疫疗法开辟了新的途径,并强调了考虑肿瘤微环境中细胞因子信号的时间方面的重要性。未来的研究可能侧重于优化JAK抑制策略,识别用于患者选择的预测生物标志物,并在其他癌症类型和治疗环境中探索这种方法。