《上海交大蹇华哗团队揭示全球转座噬菌体多样性及生态功能》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2023-05-06
  • 噬菌体(phage)是侵染细菌的病毒,也是地球上数量最多的生物,发挥着重要的生态功能。其中,转座噬菌体(transposable phage,TBP)因其独特的转座复制的生活方式而备受关注。Mu是最经典的转座噬菌体,基因组长约38kb,当它整合到宿主基因组上并进入裂解循环时,Mu会启动“copy and paste”形式的转座复制,随机插入宿主基因组,造成宿主基因的缺失、反转或融合。Mu从宿主基因组上切离时会在两端各携带一部分宿主DNA片段并且能在染色体和质粒间转座,使得Mu成为普遍性转导噬菌体。虽然有研究陆续报道一些转座噬菌体的分离与鉴定,如D108、B3, BcepMu等,但我们对全球范围内转座噬菌体的数量、分布、种类、生态功能等仍无系统性认识。

    近日,上海交通大学生命科学技术学院蹇华哗研究员带领的深海病毒研究组(DVRT)在国际微生物生态学领域权威期刊 The ISME Journal 发表了题为:Unexplored diversity and ecological functions of transposable phages 的研究论文。

    该研究首先收集了所有已分离的转座噬菌体,通过蛋白序列和结构分析鉴定出6组marker蛋白,结合该研究组自主开发的大规模系统性整合位点预测流程,通过一系列严格的筛选和校正,构建了目前为止最大的转座噬菌体基因组数据集(TBPGD),包含9766个完整基因组边界和8683个完整蛋白边界的转座噬菌体基因组。

    上海交通大学生命科学技术学院博士生张慕杰为论文第一作者,蹇华哗研究员为通讯作者,肖湘教授为本课题研究提供了重要帮助。该研究同时得到了深部生命国际研究中心(IC-DLI)团队的支持。

    该研究发现转座噬菌体广泛分布于包括宿主相关、水体、土壤和沉积物等全球各类自然环境中。按照最新的病毒分类标准可将转座噬菌体分为至少3488种,132个属,11个亚科,表明转座噬菌体具有极高的多样性。宿主分析表明转座噬菌体的宿主范围极广,这些宿主广泛分布于14个细菌门中,并首次在Campylobacterota和Bacteroidota中发现转座噬菌体。宿主匹配分析相比于其他的有尾噬菌体,转座噬菌体跨宿主侵染能力更强。

    为了探究转座噬菌体的生态功能,该研究从有完整基因组边界的转座噬菌体中鉴定出413个辅助代谢基因(AMGs),它们参与宿主的碳代谢、氮代谢、能量代谢和物质转运等过程,其中碳代谢相关的基因最多。针对分离自深海沉积物的细菌Shewanella psychrophila WP2及其整合的转座噬菌体SP2的分析表明,转座噬菌体能影响深海细菌宿主的DNA复制转录、电子传递、群体感应、膜脂合成等重要生物过程。

    该研究建立了转座噬菌体鉴定的新方法,揭示了转座噬菌体极高的多样性和重要的生态功能,极大拓展了我们对转座噬菌体这一重要病毒类群的分布、分类和生态功能的认知,为后续探索转座噬菌体的起源演化提供了良好的基础。

  • 原文来源:https://news.bioon.com/article/c4dee6997992.html
相关报告
  • 《研究揭示多维生物多样性对森林生态系统功能的影响机制》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:xxw
    • 发布时间:2019-07-16
    • 全球变化(包括气候变化、土地利用和地表覆盖变化)和人类活动等导致了生物多样性的加速丧失,进而影响了生态系统的服务功能。近年来,生物多样性对生态系统功能的影响机制受到广泛关注,是生物多样性和生态学研究领域的热点问题。大量关于生物多样性与生态系统功能关系的研究表明,生物多样性是生态系统功能的主要驱动力,但以往的研究主要集中在草地生态系统。森林作为陆表最重要的生态系统,在调节全球碳循环、减缓气候变化、维持生态系统服务功能中发挥着不可或缺的作用。在自然森林群落中,群落结构远比草地生态系统复杂。除了乔木树种外,林下的灌木和草本具有高的物种多样性和重要的生态系统功能,但是,还缺乏将森林群落的乔木、灌木和草本多个层次的整合研究。森林群落中配置于不同垂直层的物种在进化历史、功能策略等方面存在较大差异,导致群落的构建机制可能不同。同时,将空间尺度纳入其中综合考虑时,多维(multi-dimension)生物多样性,包括物种多样性、系统发育多样性和功能多样性与生态系统功能之间的关系尚不清楚,其潜在的驱动机制也有待深入研究。 云南西北部地处我国三大河流(怒江、澜沧江和金沙江)的上游,区域内有三江并流世界自然遗产地和众多的自然保护区。由于其复杂的地质、气候历史和多样的地形地貌,造就了其富有特色的生物多样性。该地区位于全球生物多样性的热点地区“中国西南山地”的核心区域,是气候变化最为敏感和脆弱的地区之一。玉龙雪山沿海拔梯度存在多种气候类型,植物种类繁多,呈现出较为完整的山地植物垂直带谱,是滇西北植物多样性的缩影,也是我国重要的生态安全屏障,具有重要的生态系统服务功能。区域内的森林群落垂直结构明显,林下拥有丰富的植物多样性,为研究森林生态系统功能提供了天然的场所。中国科学院昆明植物研究所植物多样性演化和生态适应团队高连明研究组和植物多样性与基因组学团队李德铢研究组依托丽江森林生态系统定位研究站,于2013年开始,在丽江玉龙雪山建立了沿海拔梯度的森林群落样带,旨在开展全球变化生态学和群落生态学研究,以期揭示自然状态下真实的森林生物多样性与生态系统功能的关系。 最近,该团队与加拿大多伦多大学教授Marc Cadotte、美国哥伦布大学教授Kevin Burgess合作,以玉龙雪山沿海拔梯度样带为平台,综合多维生物多样性(物种多样性、系统发育多样性和功能多样性)和森林垂直结构(乔木、灌木和草本)研究了不同空间尺度(邻体尺度和样方尺度)下生物多样性对生态系统功能(地上生物量)的影响。研究发现,乔木的地上生物量与群落性状组成(高度和叶片磷含量)和功能多样性(比叶面积)呈正相关关系,暗示选择效应和生态位互补效应均为主导因素。乔木的地上生物量并未显着降低林下植物的地上生物量,而灌木的生物量与种子大小的多样性或多性状综合的功能多样性相关联;草本植物的地上生物量则主要受系统发育多样性和物种多样性的影响,表明互补效应在林下的群落中扮演重要角色。海拔梯度主要通过物种多样性、系统发育多样性和功能多样性对生物量产生间接影响。在全球变化背景下,该研究结果有助于科学支撑森林生物多样性的保护和管理。随着空间尺度的增大,多样性与生态系统功能之间的相关性呈上升的趋势,暗示在更大的空间尺度上,生物多样性与生态系统功能之间的关系可能更为紧密。因此,在山地森林生态系统实施天然林保护或者人工林建设中,不仅要考虑乔木树种的多样性,林下的灌木和草本作为独特的系统也需要纳入生态系统服务功能的考量中。该研究对于森林生态系统修复和天然林保护具有重要的指导意义。 研究成果以Greater than the sum of the parts: how the species composition in different forest strata influence ecosystem function 为题在国际生态学期刊Ecology Letters 在线发表。在站博士后罗亚皇为论文第一作者,合作导师高连明和李德铢为共同通讯作者。该研究得到中国科学院战略性先导科技专项 (XDB31000000)、国家自然科学基金(31800354)、国家博士后基金(2017M623082)、云南省科技领军人才项目(2017HA014)和云南省博士后定向培养项目的资助。该研究同时得到中西南野生生物种质资源库分子生物学平台的支持。
  • 《Nature:新研究揭示噬菌体在多溶原性时的命运决定机制》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2023-08-21
    • 病毒就像电影中的反派一样,有两种活动方式:冷却或杀戮(chill or kill)。它们可以低调行事,悄无声息地渗入身体的防御系统,也可以发动攻击,从藏身之处爆发出来,向四面八方开火。病毒攻击几乎都是自杀性的,会撕裂病毒赖以生存的细胞。只有周围有足够多的健康细胞可以被感染,这种攻击才能成功。如果病毒颗粒的攻击一无所获,病毒就无法继续生存。它不会死,因为严格来说病毒不是活的,但它停止了发挥功能。因此,对于病毒来说,关键的挑战在于决定何时从冷却模式进入杀戮模式。 四年前,美国普林斯顿大学生物学家Bonnie Bassler和她当时的研究生Justin Silpe发现一种病毒有一个关键优势:它可以窃听细菌之间的交流。具体来说,它可以窃听细菌细胞在达到临界数量时释放的“我们有法定数量!”化学物。这种细菌交流过程被称为群体感应(quorum sensing),它的最初发现为Bassler和她的同事们带来了一系列奖项。 如今,Bassler、Silpe和他们的研究同事们在一项新的研究中发现,数十种病毒会对来自细菌的群体感应或其他化学信号做出反应。相关研究结果于2023年7月26日在线发表在Nature期刊上,论文标题为“Small protein modules dictate prophage fates during polylysogeny”。 Bassler说,“世界上有很多病毒都能监测到适当的宿主信息。我们不知道所有的刺激因素是什么,不过我们在这篇论文中发现这是一种常见的机制。” 他们不仅证实了这一策略的丰富性,还发现了控制这一策略以及发出信号告诉病毒从冷却模式转变为杀戮模式的信号的工具。 这种攻击细菌细胞的病毒被称为噬菌体(bacteriophage)会停留在细菌细胞表面,并将其基因传递到细菌细胞中。不止一种噬菌体可以同时感染一种细菌,只要它们都处于冷却模式,生物学家称之为溶原性(lysogeny)。当多个噬菌体在单个细菌中进行冷却时,就称为多溶原性(polylysogeny)。 在多溶原性下,多个噬菌体可以共存,让细菌细胞像健康细胞一样一遍又一遍地自我复制,病毒 DNA 或 RNA 隐藏在细菌自身的 DNA 或 RNA 中,与细胞一起复制。但这些渗透的噬菌体并不完全是和平的,更像是相互确保的毁灭。这种微妙的缓和关系一直持续到有什么东西触发一个或多个噬菌体进入杀戮模式。 研究噬菌体战争的科学家们早就知道,对系统的重大破坏---比如大剂量紫外线辐射、致癌化学物质,甚至一些化疗药物---会让所有常驻噬菌体进入杀戮模式。科学家们认为,此时噬菌体会开始冲刺,争夺细菌的资源,速度最快的噬菌体将赢得胜利,释放出自己的病毒颗粒。 但Bassler团队发现并非如此。Bassler团队博士后助理研究员Grace Johnson利用高分辨率成像技术观察了感染了两种噬菌体的单个细菌细胞,并向它们注入了一种通用杀伤信号。这两种噬菌体都开始行动,撕碎宿主细胞。为了观察结果,Johnson在每种噬菌体的基因上“涂抹”了特殊的荧光标签,这些标签会根据哪种噬菌体正在复制而发出不同颜色的光。 当荧光标签亮起时,她震惊地发现并没有明显的赢家。两者之间甚至没有平分秋色。相反,她看到一些细菌发出一种颜色的光,另一些细菌发出第二种颜色的光,还有一些细菌是混合体---同时产生两种噬菌体。Bassler说,“没有人想到会有三个亚群。那真是激动人心的一天。我可以看到这些不同的细菌细胞在进行所有可能的噬菌体生产组合---诱导其中一种噬菌体、诱导另一种噬菌体、同时诱导两种噬菌体。有些细胞没有诱导任何一种噬菌体。” 另一个挑战是找到一种方法,一次只诱导两种噬菌体中的一种。Silpe率先找到了触发因子。虽然Bassler团队还不知道这些噬菌体在自然界中会对什么信号做出反应,但Silpe已为每种噬菌体设计了一种特定的人工化学触发因子。Bassler团队博士后Grace Beggs在这种人工系统的分子分析中发挥了重要作用。 当Silpe将多溶原性的细菌细胞暴露在他的人工化学触发因子下时,只有对这种触发因子做出反应的噬菌体才会复制,而且是在所有细菌细胞中复制。其他噬菌体则完全处于冷却状态。 他说,“我没想到会成功。我预计,由于我的策略没有模拟自然界中的真实过程,两种噬菌体都会复制。没想到我们只看到了一种噬菌体会复制。据我所知,以前从未有人这样做过。” Bassler说,“我认为,在Johnson和Silpe做实验之前,没有人想过要知道噬菌体-噬菌体战争是如何在单细胞中发生的,因为他们认为这是不可能做到的。细菌非常微小。即使是单个细菌也很难成像,而要成像细菌内部的噬菌体基因真地非常非常困难。” Johnson一直在调整成像平台---荧光原位杂交(fluorescence in situ hybridization, FISH)---用于另一个涉及生物膜(biofilm)的群体感应项目,但当她在一次小组会议上听到Silpe分享他的研究时,她意识到FISH可以揭示到目前为止关于窃听噬菌体的棘手秘密。 Bassler 说,世界上大多数细菌体内都有不止一种噬菌体,“但没有人能够像这两种噬菌体那样对它们进行操纵和成像。”“他们可以根据需要诱导一种噬菌体、另一种噬菌体或两种噬菌体(这种灵巧的策略是Justin的杰作),然后还能在单个细菌细胞中看到实际发生的情况?这也是从未有过的。我们可以在单细胞水平上看到噬菌体战争。” Bassler补充说,“噬菌体基因组上的几乎所有基因仍然是神秘的。我们根本不知道大多数病毒基因是做什么的。” 她说,“是的,在这项新的研究中,我们发现了一些噬菌体基因的功能,我们证明了它们的作用就是启用这种完全出乎意料的冷却-杀戮开关,而这个开关决定了在噬菌体-噬菌体战争中哪种噬菌体会获胜。这一发现表明,还有更多令人兴奋的过程有待发现。噬菌体在 70 年前开创了分子生物学时代,如今它们又开始流行起来,既可以作为治疗手段,也可以作为在进化过程中使用过的令人难以置信的分子技巧的宝库。这是一个宝库,而且几乎完全未被开发。” 参考资料: Justin E. Silpe et al. Small protein modules dictate prophage fates during polylysogeny. Nature, 2023, doi:10.1038/s41586-023-06376-y.