《阻击超级细菌 我科学家从抗菌肽找到思路》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2020-01-10
  • 滞留菌也有显著的清除作用,其综合抗菌效果明显优于妥布霉素、左氧氟沙星、卡那霉素及头孢替坦等传统抗生素。ZY4长期使用不易产生耐药性,亚抑菌浓度的ZY4与鲍曼不动杆菌和绿脓杆菌持续作用60代后,ZY4对这两类菌的抑菌作用未见明显改变。

      值得注意的是,在小鼠败血症感染模型中,ZY4降低了对绿脓杆菌肺部感染的敏感性,也抑制了绿脓杆菌和鲍曼假单胞菌在靶器官的传播。这些发现表明,ZY4是抗多药物耐药细菌感染的理想候选药物分子。

      ZY4抗菌肽源于自然超于自然

      为提升对超级细菌的“作战”能力,科学家们一方面通过研发新型抗生素或抗菌分子,另一方面也改造传统的抗生素,使其活性得到提升或通过不同靶点发挥抗菌活性。遗憾的是,目前仅有少数几个新型抗生素处于临床开发阶段。与传统的抗生素不同,抗菌肽是一类由氨基酸组成的多肽类小分子,具有杀菌快速且很难导致微生物耐药等特性,是良好的抗菌候选药物分子。

      “我们团队长期从事抗菌肽研究。截至目前,我们通过分离纯化结合基因鉴定及转录组分析等手段,鉴定识别了1000多个来自两栖类、爬行类及昆虫等动物体内的抗菌肽。”张治业告诉记者,近期,他们在天然抗菌肽的基础上,根据课题组多年的研究经验,并结合部分文献的报道,通过氨基酸的替换、结构修饰等手段,设计改造获得了ZY4。

      张治业认为,改造抗菌肽的关键问题,是保持其已有的抗菌活性,并最大程度地减小毒性,增强稳定性,同时通过缩短肽链长度以实现成本最低化;而难点与创新点则在于如何提升抗菌肽的活性和增加特异性,这一方面来自于天然抗菌肽本身的特性,另一方面取决于不同细菌本身的性质,如革兰氏阴性菌和革兰氏阳性菌在细胞壁和细胞膜差别巨大,就可以根据这一特点,针对不同类型的细菌,通过设计改造来优化抗菌肽。

      “用类似的方法并结合我们的经验,我们也希望开发出针对其他超级细菌的抗菌肽。”张治业表示,但ZY4作为候选药物分子,走向临床应用还有很长的路要走,还需要提供详细的药理、药效、毒理研究、药代动力学及药学研究等用于临床批文的申报;即使拿到了药物临床批文,也须经过Ⅰ期到Ⅲ期临床研究的考验。“我们的这项研究,其重要意义主要在于为应对当前越来越严重的耐药性鲍曼不动杆菌和绿脓杆菌的传播及感染问题提供了良好的候选药物分子,也为设计改造抗菌肽提供了思路和参考方法。”

  • 原文来源:http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2020-01/08/content_438188.htm?div=-1
相关报告
  • 《科学家找到杀死抗药细菌的新靶点》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2016-12-08
    • 12月1日,Nature杂志发布一项研究显示,德国科学家阐明了一个细菌回收mRNA上停滞核糖体的新机制,当mRNA上缺少终止密码子就会导致核糖体无法从mRNA上脱离。参与该过程的蛋白为未来开发新抗生素药物提供了潜在靶点。 对传统抗生素产生抵抗的抗药细菌越来越成为一个严重的医学难题,因此急需开发可以攻击新靶点的新抗生素。该研究对核糖体的回收过程进行了全面的结构学研究。 核糖体是将mRNA携带的遗传信息翻译成蛋白质的细胞器。核糖体能够向一个固定方向“阅读”核苷酸序列,当遇到终止密码子就会从mRNA上释放。但是mRNA合成和加工过程中产生的错误会导致mRNA缺少终止信号,引起核糖体一直附着在mRNA 和正在合成的蛋白质上发生停滞。细胞进化出几种方式来帮助核糖体从mRNA上脱离,并对这些核糖体进行回收再利用。 研究人员利用冷冻电镜技术确定了细菌内负责核糖体回收的因子ArfA的结构。他们的分析揭示了ArfA如何从一个有缺陷的mRNA上识别停滞的核糖体,随后招募一个释放因子将核糖体从未完成的蛋白上解除。这样就可以使停滞的核糖体从mRNA上释放,按照正常方式分离成大小亚基。分离的大小亚基又可以重新与另一个mRNA接触,继续进行蛋白质的合成。 由于人类核糖体的回收依赖于一些与ArfA无关的因子,这样的抑制剂应该只能特异性作用于细菌核糖体,通过切断游离核糖体的供应逐渐杀死细菌。
  • 《美加科学家发现阻止细菌生长的新毒素,有望用于抵抗超级细菌》

    • 来源专题:中国科学院文献情报生命健康领域集成服务门户
    • 编译者:赵若春
    • 发布时间:2019-11-24
    • 11月12日,美国麻省理工学院和加拿大麦克马斯特大学的研究人员发现一种新的杀菌毒素Tas1,其有望用于抵抗超级细菌。Tas1具有酶活性,能快速产生细菌信号分子(p)ppapp,以消耗细胞中作为能量来源的ATP分子。当ATP被耗尽时,细胞代谢异常,细菌则会死亡。该研究成果对开发抗生素替代品具有重要的意义。