《Nature Biotechnology:科研人员通过调控蛋白质稳态建立蛋白降解靶向减毒疫苗新策略》

  • 来源专题:生物安全知识资源中心—领域情报网
  • 编译者: hujm
  • 发布时间:2022-07-11
  • 中国科学院深圳先进技术研究院合成生物学研究所司龙龙课题组,在《自然-生物技术》(Nature Biotechnology)上,发表了题为Generation of a live attenuated influenza A vaccine by proteolysis targeting的研究成果。该团队以流感病毒为模式病毒,建立了蛋白降解靶向病毒作为减毒疫苗的技术(Proteolysis-Targeting Chimeric virus vaccine,PROTAC疫苗),为疫苗开发提供了新思路。

      病毒感染与传播危害人类健康和社会经济的发展。流感是由流感病毒引起的一种呼吸道传染病。流感病毒抗原性易变、传播迅速,每年可引起季节性流行。疫苗是预防和控制传染病最为经济有效的手段之一。2021年,《科学》(Science)将“下一代疫苗的开发”列为125个前沿科学问题之一(www.science.org/content/resource/125-questions-exploration-and-discovery)。减毒疫苗因在免疫效果方面具备潜在优势而成为重要发展方向之一,如流感减毒疫苗可采用更为简单、经济、无痛,且与自然感染途径一致的鼻内喷雾方式接种;可保留病毒全部或大部分抗原的天然结构,可诱导更广的免疫应答,包括体液免疫、呼吸道黏膜免疫、细胞免疫等;可提供交叉免疫保护作用。

      蛋白质作为病毒结构组成和正常生命活动所必需的共性生命物质,为研究操控病毒进而利用病毒提供了重要切入点。基于蛋白质调控的病毒减毒策略,大致可归纳为两个主要方面:一是抑制或阻断蛋白质合成以减少子代病毒组装所需的“原料”,二是加速蛋白质降解以及时清除子代病毒组装所需的“原料”。本研究中,司龙龙团队构建PROTAC病毒,旨在通过操控病毒蛋白质的降解降低病毒的复制能力,将野生型病毒减毒成为疫苗。

      宿主细胞内天然存在的蛋白质降解机器“泛素-蛋白酶体系统”为PROTAC病毒疫苗的设计奠定了关键生物学基础。近年来,基于泛素-蛋白酶体系统的PROTAC蛋白质靶向降解技术,已用于开发基于化学小分子的蛋白降解剂【Nature Biotechnology 40, 12-16 (2022);Nature Reviews Drug Discovery 21, 181-200 (2022)】,科研人员设计出一种具有两个活性端的小分子化合物,一个活性端可与需要降解的靶蛋白相结合,而另一个活性端可与特定的E3泛素连接酶相结合,从而诱导靶蛋白的泛素化,进而被蛋白酶体降解。

      本研究中,司龙龙团队将宿主细胞蛋白质降解机器可选择性降解靶蛋白的生物学机制,拓展至生命体-病毒疫苗的设计构建(图1)。该团队选择流感病毒作为模式病毒,利用宿主细胞中天然存在的蛋白质降解机器,设计可条件性操控病毒蛋白质稳定与降解的元件、工程病毒基因组,使相应的病毒蛋白在正常细胞中被泛素-蛋白酶体系统识别而降解,导致病毒复制能力减弱,而成为潜在的疫苗;而在疫苗制备细胞中,病毒蛋白降解诱导元件会被选择性移除,使病毒蛋白得以保留,因此PROTAC病毒在疫苗制备细胞中可以高效复制而大量制备。

      据上述设计原理,该团队首先构建了一株PROTAC流感病毒疫苗,命名为M1-PTD。研究对病毒生长曲线考察发现,M1-PTD只能在PROTAC病毒制备细胞中高效复制而得以制备,而在正常细胞中复制能力显著下降而安全。此外,免疫荧光实验结果表明,M1-PTD病毒蛋白在正常细胞中被降解;噬斑实验结果表明,M1-PTD仅在PROTAC病毒制备细胞中可形成噬斑,而在正常细胞中不形成噬斑;细胞病变实验结果表明,M1-PTD在正常细胞中不引起明显病变。这些实验结果均表明M1-PTD流感病毒具备成为安全疫苗的潜力。

      该团队对构建的PROTAC流感病毒的工作机理进行了验证。结果显示,M1-PTD流感病毒的蛋白在正常细胞中被降解而复制减弱,而宿主细胞蛋白酶体的抑制可以恢复M1-PTD的病毒蛋白水平和复制能力,说明PROTAC流感病毒的蛋白降解和复制减弱是泛素-蛋白酶体途径依赖的,符合设计原理。

      该团队使用小鼠、雪貂动物模型对构建的M1-PTD流感病毒进行了安全性评价。研究将M1-PTD病毒或野生型流感病毒以滴鼻的方式接种于动物,监测动物的死亡率和体重,并检测动物鼻洗液、气管、肺中的病毒滴度。结果显示,与野生型病毒相比,M1-PTD在动物体内的复制能力显著降低,且不会引起小鼠死亡或体重下降,说明其在动物体内具备安全性。

      该团队在小鼠、雪貂动物模型中对M1-PTD流感疫苗进行了免疫效果评价。结果显示,M1-PTD可以诱导广泛的免疫应答,包括体液免疫、黏膜免疫、细胞免疫应答;且M1-PTD可以提供良好的交叉免疫保护。 

      该研究基于合成生物学理念,将细胞的蛋白质降解机器生物学机制拓展至生命体-病毒疫苗的设计,为病毒疫苗开发提供了新思路,丰富了人类抵御病毒的疫苗技术武器库,并有助于促进细胞蛋白质降解机器基础生物学研究与疫苗研发医学转化的深度交叉融合。同时,该团队提出,虽然该研究在细胞和动物模型中证明了PROTAC病毒疫苗概念的可行性,但PROTAC病毒作为疫苗的潜在应用仍需要大量的优化和探索。

     

  • 原文来源:https://news.bioon.com/article/441ce31797fc.html
相关报告
  • 《Nature子刊:调控蛋白质稳态,司龙龙团队建立PROTAC减毒疫苗新策略》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-07-11
    • 中国科学院深圳先进技术研究院合成生物学研究所司龙龙课题组在 Nature Biotechnology 期刊发表了题为:Generation of a live attenuated influenza A vaccine by proteolysis targeting 的研究论文。 研究团队以流感病毒为模式病毒,建立了蛋白降解靶向病毒作为减毒疫苗的技术(Proteolysis-Targeting Chimeric virus vaccine,PROTAC疫苗),为疫苗开发提供了新思路。 病毒感染与传播严重危害人类健康和社会经济的发展,已引起全球的高度关注。其中,流感是由流感病毒引起的一种呼吸道传染病。流感病毒其抗原性易变,传播迅速,每年可引起季节性流行。每年流感季节性流行在全球可导致300万-500万人重症病例,29万-65万呼吸道疾病相关死亡。 疫苗是预防和控制传染病最为经济有效的手段之一。2021年 Science 将“下一代疫苗的开发”列为125个前沿科学问题之一(www.science.org/content/resource/125-questions-exploration-and-discovery)。 减毒疫苗因其在免疫效果方面具备潜在优势而成为重要发展方向之一,如流感减毒疫苗可采用更为简单、经济、无痛、且与自然感染途径一致的鼻内喷雾方式接种;可保留病毒全部或绝大部分抗原的天然结构,可诱导更广的免疫应答,包括体液免疫、呼吸道黏膜免疫、细胞免疫等;可提供交叉免疫保护作用。 蛋白质作为病毒结构组成和正常生命活动所必需的共性生命物质,为人们操控病毒进而利用病毒提供了重要切入点。基于蛋白质调控的病毒减毒策略,大致可以归纳为两个主要方面:一是抑制或阻断蛋白质合成以减少子代病毒组装所需的“原料”生产,二是加速蛋白质降解以及时将子代病毒组装所需的“原料”清除。 在本研究中,司龙龙团队构建了PROTAC病毒,旨在通过操控病毒蛋白质的降解降低病毒的复制能力,将野生型病毒减毒成为疫苗。 宿主细胞内天然存在的蛋白质降解机器“泛素-蛋白酶体系统”为PROTAC病毒疫苗的设计提供了关键生物学基础。近年来,基于泛素-蛋白酶体系统的PROTAC蛋白质靶向降解技术,已经被成功地用于开发基于化学小分子的蛋白降解剂,并成为国际科学研究热点,即研究人员设计出一种具有两个活性端的小分子化合物,一个活性端可以与需要降解的靶蛋白相结合,而另一个活性端可以与特定的E3泛素连接酶相结合,从而诱导靶蛋白的泛素化,进而被蛋白酶体降解。 在本研究中,司龙龙团队将宿主细胞蛋白质降解机器可选择性降解靶蛋白的生物学机制,成功拓展至生命体—病毒疫苗的设计构建。研究团队选择流感病毒作为模式病毒,利用宿主细胞中天然存在的蛋白质降解机器,设计可条件性操控病毒蛋白质稳定与降解的元件,工程病毒基因组,使得相应的病毒蛋白在正常细胞中被泛素-蛋白酶体系统识别而降解,导致病毒复制能力减弱,而成为潜在的疫苗;而在疫苗制备细胞中,病毒蛋白降解诱导元件会被选择性移除,使得病毒蛋白得以保留,因此PROTAC病毒在疫苗制备细胞中可以高效复制而大量制备。 根据上述设计原理,研究团队首先构建了一株PROTAC流感病毒疫苗,命名为:M1-PTD。对病毒生长曲线考察发现,M1-PTD只能在PROTAC病毒制备细胞中高效复制而得以制备,而在正常细胞中复制能力显著下降而安全。此外,免疫荧光实验结果表明,M1-PTD病毒蛋白在正常细胞中被降解;噬斑实验结果表明,M1-PTD仅在PROTAC病毒制备细胞中可以形成噬斑,而在正常细胞中不形成噬斑;细胞病变实验结果表明,M1-PTD在正常细胞中不引起明显病变。所有这些实验结果均表明M1-PTD流感病毒具备成为安全疫苗的潜力。 该团队对构建的PROTAC流感病毒的工作机理进行了验证。结果显示,M1-PTD流感病毒的蛋白在正常细胞中被降解而复制减弱,而宿主细胞蛋白酶体的抑制可以恢复M1-PTD的病毒蛋白水平和复制能力,说明PROTAC流感病毒的蛋白降解和复制减弱是泛素-蛋白酶体途径依赖的,符合设计原理。 研究团队使用小鼠、雪貂动物模型对构建成功的M1-PTD流感病毒进行了安全性评价。将M1-PTD病毒或野生型流感病毒以滴鼻的方式接种于动物,监测动物的死亡率和体重,并检测动物鼻洗液、气管、肺中的病毒滴度。结果显示,与野生型病毒相比,M1-PTD在动物体内的复制能力显著降低,且不会引起小鼠死亡或体重下降,说明其在动物体内具备安全性。 研究团队在小鼠、雪貂动物模型中对M1-PTD流感疫苗进行了免疫效果评价。结果显示,M1-PTD可以诱导广泛的免疫应答,包括体液免疫、黏膜免疫、细胞免疫应答;且 M1-PTD可以提供良好的交叉免疫保护。 该研究基于合成生物学理念,将细胞的蛋白质降解机器生物学机制拓展至生命体—病毒疫苗的设计,不仅为病毒疫苗开发提供了新思路,丰富了人类抵御病毒的疫苗技术武器库,也有助于促进细胞蛋白质降解机器基础生物学研究与疫苗研发医学转化的深度交叉融合。同时该团队指出,虽然该研究在细胞和动物模型中证明了PROTAC病毒疫苗概念的可行性,但PROTAC病毒作为疫苗的潜在应用仍需要大量的优化和探索。
  • 《Nature | 以肽为中心的car靶向细胞内癌蛋白》

    • 来源专题:战略生物资源
    • 编译者:李康音
    • 发布时间:2023-11-11
    • 本文内容转载自“ CNS推送BioMed”微信公众号。原文链接: https://mp.weixin.qq.com/s/qT6raNDpEzYmosEDNUVEvw 2023年11月8日,美国纽约大学格罗斯曼医学院等机构的研究人员在Nature发表题为Targeting of intracellular oncoproteins with peptide-centric CARs的文章。 大多数致癌驱动因子是细胞内蛋白,这限制了它们的免疫治疗靶向于单个人类白细胞抗原(HLA)同种异体呈递的突变肽(新抗原)。然而,大多数癌症具有适度的突变负担,不足以使用基于新抗原的治疗产生反应。神经母细胞瘤是一种儿科癌症,其突变很少,而是由表观遗传失调的转录网络驱动的。 该研究发现神经母细胞瘤免疫肽丘富含来自肿瘤发生所必需的蛋白质的肽。研究人员主要针对HLA-A24:02中发现的未突变肽QYNPIRTTF,该肽来源于神经母细胞瘤依赖基因和主要转录调控因子PHOX2B。为了靶向QYNPIRTTF,研究人员利用预测的潜在交叉反应肽,通过反计划策略开发了肽中心嵌合抗原受体(PC-CARs)。研究人员进一步提出PC-CARs可以识别其他HLA同种异体上的肽,当呈现相似的整体分子表面时。根据该研究的计算模型结果,研究人员发现PHOX2B PC-CARs也识别由HLA-A23:01呈现的QYNPIRTTF,这是非洲血统人群中最常见的非a2等位基因。最后,研究人员在体外证明了表达这些hla的神经母细胞瘤细胞的有效和特异性杀伤,并在小鼠中证明了肿瘤完全消退。这些数据表明,PC-CARs有潜力扩大免疫治疗靶标库,包括非免疫原性细胞内癌蛋白,并允许在临床环境中通过额外的HLA同种异体靶向。