《我国科学家在“连续变量”集成光量子芯片领域实现新突破》

  • 来源专题:能源情报网监测服务平台
  • 编译者: 郭楷模
  • 发布时间:2025-02-21
  • 我国量子科技研究迎来突破性进展。《自然》杂志20日发布一项重要研究成果,我国科研团队成功实现全球首例基于集成光量子芯片的“连续变量”量子纠缠簇态。相关专家表示,这一成果填补了采用连续变量编码方式的光量子芯片关键技术空白,也为光量子芯片的大规模扩展及其在量子计算、量子网络等领域的应用奠定重要基础。

    集成光量子芯片是一种能在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。如何在光量子芯片上实现大规模量子纠缠是国际量子研究难题。量子纠缠簇态作为一种典型的多比特量子纠缠态,是量子信息科学的核心资源,然而其确定性、大规模制备面临巨大实验困难,尤其连续变量簇态的光量子芯片的制备和验证技术在国际上仍属空白。

    经多年攻关,北京大学教授王剑威、龚旗煌和山西大学教授苏晓龙等带领的研究团队,成功攻克关键技术瓶颈,创新性发展了连续变量光量子芯片调控、多色相干泵浦与探测技术,实现了确定性、可重构的纠缠簇态制备,并对簇态纠缠结构进行实验验证。

    王剑威介绍,量子比特可分别通过离散变量编码、连续变量编码方式在光量子芯片上实现。为制备出具有超高保真度的量子比特,以往通常采用基于单光子的离散变量编码方式,但该方法的成功率随量子比特数增加呈指数下降。为此,团队采用基于光场的连续变量编码方式,破解了制备量子比特和量子纠缠的“概率”难题,首次实现了量子纠缠簇态在芯片上的“确定性”产生。

    “这是我国科学家在集成光量子芯片技术领域取得的新突破。”龚旗煌表示,这一原创成果为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有重要意义。

    《自然》杂志审稿人评价称:“这项工作首次在光量子芯片上实现多比特的连续变量量子纠缠,是可扩展光量子信息处理的重要里程碑。”

  • 原文来源:https://www.cnenergynews.cn/kejizhuangbei/2025/02/20/detail_20250220200351.html
相关报告
  • 《北京大学与山西大学研究团队合作,在连续变量光量子芯片领域取得重大突破》

    • 来源专题:计量基标准与精密测量
    • 编译者:李晓萌
    • 发布时间:2025-02-23
    • 2025年2月20日,北京大学物理学院现代光学研究所王剑威教授和龚旗煌教授课题组与山西大学苏晓龙教授课题组合作,在国际顶级学术期刊《自然》(Nature)上发表一项以“基于集成光量子频率梳芯片的连续变量多体量子纠缠”(Continuous-variable multipartite entanglement in an integrated microcomb)为题的突破性研究成果。该团队在国际上首次实现了基于集成光量子芯片的连续变量簇态量子纠缠,为光量子芯片的大规模扩展及其在量子计算、量子网络和量子信息等领域的应用奠定了重要基础。研究团队通过创新性地发展超低损耗的连续变量光量子芯片调控技术和多色相干泵浦与探测技术,成功在氮化硅集成频率梳微环腔的真空压缩频率超模上确定性地制备出多比特纠缠簇态,并实现不同簇态纠缠结构的可重构调控。同时,团队利用van Loock-Furusawa判据实验违背和完备的nullifier(零化子)关联矩阵测量,对连续变量簇态的纠缠结构进行了严格实验判定。这一研究成果不仅解决了以往集成光量子芯片面临的扩展性难题,还为未来实现更大尺度的量子纠缠与量子调控提供了新的技术路径。该成果标志着集成光量子芯片技术在量子信息处理领域的重要突破,为量子计算和量子网络的实用化发展提供了关键技术支撑。 量子信息的基本单元是量子比特(qubit)或量子模式(qumode),二者可统称为量子比特。它们可分别通过离散变量和连续变量编码在光量子体系中实现,各具优缺点。例如,基于单光子的离散变量体系能够实现超高保真度的量子比特操作,但其面临的主要挑战是制备量子比特和量子纠缠存在概率性。根据现有技术手段,离散变量量子纠缠的制备成功率随比特数增加呈指数下降,这限制了其可扩展性。相比之下,基于光场正交分量编码的连续变量体系能够确定性产生量子比特和量子纠缠,尽管其操控保真度略低,却为大尺度光量子纠缠态的制备提供了一条极具前景的技术路径。 集成光量子芯片是一种能够在微纳尺度上编码、处理、传输和存储光量子信息的先进平台。自2008年国际上实现首个离散变量集成光量子芯片以来,集成光子芯片材料和技术取得了显著进展,并在离散变量光量子信息领域发挥了重要作用。然而,连续变量集成光量子芯片的发展面临诸多挑战:一方面,集成光学参量放大过程要求芯片具备高光学非线性和低光学损耗等高性能;另一方面,对片上多模压缩光场与纠缠的机理理解不足,多模纠缠调控与验证也存在技术瓶颈。这些因素导致连续变量光量子芯片的研究长期处于起步阶段,其编码与纠缠的比特数仅限于单模或双模压缩态,而多模(多比特)量子纠缠态的片上制备与验证仍极具挑战性。 纠缠簇态作为一种典型的多比特量子纠缠态,在量子信息科学中具有极其重要的地位。簇态不仅是单向量子计算的核心资源,还在量子纠错和容错量子计算中发挥关键作用,同时为量子网络的构建提供了重要支持,并可用于模拟复杂的多体量子系统。尽管簇态纠缠的重要性已被广泛认可,但其大规模制备技术仍面临诸多挑战。此前,光量子芯片上的簇态纠缠研究主要集中在离散变量体系,确定性地制备大规模纠缠簇态面临巨大实验困难,而连续变量簇态的片上制备和验证技术在国际上仍属空白。 在本研究中,研究团队首次在国际上实现了基于集成光量子芯片的连续变量纠缠簇态的确定性制备、可重构调控与严格实验验证。这一突破性成果不仅填补了连续变量光量子芯片领域的关键技术空白,还为大规模量子纠缠态的制备与操控提供了全新的技术路径,对推动量子计算、量子网络和量子模拟等领域的实用化发展具有非常重要的意义。 值得一提的是,当前纠缠模式数目的限制主要来自集成微腔的尺度(即频率间隔)和多色泵浦光的数目。团队已成功解决了基础的科学问题,为未来实现更大规模簇态纠缠及其在量子信息处理中的应用奠定了重要的物理基础。面向大规模扩展主要依赖于工程技术的优化,例如,通过先进芯片加工技术制备更大尺度的微腔,以及利用相位锁定的光学频率梳进行激发等工程手段,可以显著提升纠缠态的规模和复杂度。 论文原文链接:https://www.nature.com/articles/s41586-025-08602-1
  • 《突破 | 我国科学家研究分布式光量子计算获重要进展》

    • 来源专题:光电情报网信息监测服务平台
    • 编译者:胡思思
    • 发布时间:2024-10-09
    • 能不能用量子通信网连接多台量子计算机,让它们远程凝聚出“超级量子算力”?记者10月6日从中国科学技术大学获悉,该校郭光灿院士团队的李传锋、周宗权、柳必恒等人,近期基于多模式固态量子存储和量子门隐形传送协议,在合肥市区实现跨越7公里的非局域量子门,并演示了分布式的多伊奇-乔萨算法及量子相位估计算法。国际权威学术期刊《自然·通讯》日前发表了相关研究成果。 量子计算是当前国际科研的重要领域,多个国家都在研制性能更为强大的量子计算机。一个思路是在一台量子计算机上实现越来越多的量子比特,但随着量子比特的增加,会出现信号串扰以及布线、制冷等方面的技术限制。因此,研制多台量子计算机,让它们远程互联合力实现分布式量子计算,近年来成为量子计算研究的新思路。 但是,分布式量子计算存在一系列技术难点,之前的非局域量子门运算只能在数十米距离中实现,无法满足在大尺度量子网络中整合算力资源的需求。 近期,郭光灿院士团队基于量子门隐形传送协议,建立两个量子节点之间的非局域量子门,这两个量子节点分别位于中国科学技术大学东校区和合肥市大蜀山东侧,之间的直线距离为7公里。 研究团队首先在两节点间使用通信波段光子和专线光缆,进行量子纠缠态的远程分发。随后,两个节点分别执行本地的两比特量子门操作。一个重要的技术突破是,他们采用掺铕硅酸钇晶体材料,实现了纠缠态的长时间存储,从而支持了两个远距离节点间的量子通信与同步,进一步的本地单比特操作即可把本地的两比特量子门隐形传送为远距离的两比特量子门。 实验结果表明,两个节点的光子之间完成了两比特非局域量子门操作,其中受控非门的保真度达88.7%。固态量子存储器的纠缠存储时间相比前人工作提升近2倍,并且纠缠存储的时间模式数达1097个,使得非局域量子门的生成速率获得了线性的提升。基于非局域量子门,研究团队进一步在这两个远程节点间演示了两比特的多伊奇-乔萨算法以及量子相位估计算法,成功实现了量子算法的远程分布式执行。 研究人员介绍,该研究首次在城市距离上实现分布式光量子计算演示,展示了基于量子存储和通信光缆构建分布式量子计算网络的可行性,为实现规模化量子计算提供了新思路。 《自然·通讯》杂志审稿人对此给予高度评价,认为“该研究在实现量子网络方面取得了重要进展,它开辟了一个新的实验方向去实现分布式量子信息处理”。 图1:跨越7公里的非局域量子门。a.量子节点分布地图和实验装置图; b.量子门隐形传送的逻辑线路图 图2:分布式量子计算算法的演示。a-e.Deutsch-Jozsa算法的逻辑线路图和实验结果;f-j.量子相位估计算法的逻辑线路图和实验结果 图1:跨越7公里的非局域量子门。a.量子节点分布地图和实验装置图; b.量子门隐形传送的逻辑线路图