《组件相互作用增强的准固态电解质,具有多种功能,适用于极端条件下具有优越安全性的柔性锂氧电池》

  • 来源专题:纳米科技
  • 编译者: 郭文姣
  • 发布时间:2019-01-14
  • 随着柔性和可穿戴设备的快速发展,高性能、安全稳定的锂氧(Li-O2)柔性电池成为迫切需要。在此,基于聚合物基体中聚偏氟乙烯- co -六氟丙烯和纳米硅之间的组分相互作用的集成固态设计,提出了一种稳定的锂氧电池准固态电解质(PS - QSE)。作为检测组装Li-O2电池包含PS QSE应承担的展品有效改善阳极可逆性(超过200个周期,850 h)和电池的循环稳定性(89周期,近900 h)。改善是由于PS QSE应承担的稳定性(包括电化学、化学和机械稳定性),以及有效保护锂阳极阴极的激进的可溶性中间体生成的。此外,还证明了在as - prepared PS - QSE中,各组分之间的相互作用在调节锂离子传导机制中起着关键作用。此外,基于口袋型PS‐QSE的Li-O2锂电池也显示出良好的灵活性,由于其集成的固态设计,可以承受各种变形。此外,Li-O2电池可以打洞,甚至可以切割成任何形状,安全性极高。因此,这种电池有潜力满足柔性和可穿戴电子产品的适配性和舒适性的要求。

    ——文章发布于2019年1月11日

相关报告
  • 《【Advanced Energy Materials】工程师开发用于高性能全固态锂金属电池的先进固态电解质》

    • 来源专题:新能源汽车
    • 编译者:王晓丽
    • 发布时间:2024-07-22
    • 香港科技大学(科大)工程学院的研究人员最近为锂金属电池(LMB)开发出新一代固态电解质(SSE),可大大提高安全性和性能。 这一发现有助于推动电动汽车、便携式电子产品和电网等电池应用领域的储能技术发展。 与传统的液态电解质 LMB 相比,全固态 LMB 通过用固态电解质取代易燃的有机溶剂电解质,并抑制树枝状生长这一有害现象,从而提高了安全性和能量密度。 它们为储能技术的发展带来了广阔的前景。 为了应对这一挑战,香港科技大学化学与生物工程系助理教授 Kim Yoonseob 教授领导的研究团队开发了一种新的策略,将一类多孔的离子共聚物(Li+)结合起来。 这种新型 iCOF/PIL 复合 SSE 在室温下具有优异的离子电导率(高达 1.50 x 10-3 S cm-1)和锂离子传输能力(大于 0.80)。 通过实验和计算相结合的研究,研究小组发现 PIL、双(三氟甲烷磺酰基)亚胺锂(LiTFSI)和 iCOFs 之间建立的共配位和竞争配位机制能够在限制 TFSI- 移动的同时实现 Li+ 的快速传输。 利用这种先进的 SSE,研究小组进一步制造出了由复合 SSE 和 LiFePO4 复合阴极组成的 LMB 全电池,并发现它在 1C 和室温条件下的初始放电容量为 141.5 mAh g-1,在 800 次循环中的容量保持率高达 87%。 它释放了 iCOFs 在电化学储能设备中的巨大潜力,为全固态 LMB 在电动汽车、便携式电子产品和电网等各种应用中的广泛采用开辟了新的道路。 这项研究由香港科技大学、上海交通大学、浙江大学和韩国汉阳大学的研究人员合作完成,论文发表在Advanced Energy Materials 上。 原文链接: Jun Huang et al, High‐Performance All‐Solid‐State Lithium Metal Batteries Enabled by Ionic Covalent Organic Framework Composites, Advanced Energy Materials (2024). DOI: 10.1002/aenm.202400762
  • 《日本在室温下合成陶瓷柔性片状电解质》

    • 来源专题:中国科学院文献情报先进能源知识资源中心 |领域情报网
    • 编译者:guokm
    • 发布时间:2020-06-07
    • 据报道,日本首都大学东京(4月变更为东京都立大学)研发了一种为锂金属电池打造陶瓷柔性电解质薄片的新方法。研究人员将石榴石型陶瓷、聚合物粘合剂和一种离子液体混合在一起,打造出一种类固态片状电解质。由于研究人员在室温下进行合成,因而与现有在高温下(>1000°C)进行的工艺相比,该新方法的耗能大大降低。此外,该电解质能够在很大的温度范围内工作,是一种前景非常好的电解质,可用于电动汽车等设备的电池中。 图片来源:东京都立大学   化石燃料满足了全球大部分的能源需求,包括电力。不过,化石燃料正在被耗尽,而且燃烧化石燃料会导致二氧化碳和有毒氮氧化物等其他污染物直接排放到大气中。全球都需要向更清洁的可再生能源进行转型,不过,风能和太阳能的可再生能源往往是间歇性能源,因为风不会一直吹,而晚上也没有太阳。因此,需要研发先进的能源存储系统,更高效地利用此种间歇性可再生能源。自1991年,索尼公司实现锂离子电池的商业化以来,此类电池就对现代社会造成了深远的影响,为多种便携式电子产品和无绳吸尘器等家用电器提供动力。不过,电动汽车仍需要最先进的锂离子技术,而且电池的容量和安全性需要得到很大的改进。   因此,很多科学家开始研究锂金属电池。因为从理论上看,锂金属阳极的容量比现有的商用石墨阳极的容量更高。不过,锂金属阳极仍存在技术障碍。例如,在液态电池中,可能会生长锂枝晶,导致电池短路,甚至引发火灾和爆炸。不过,固态无机电解质就明显更安全。而石榴石型(结构形状)陶瓷Li7La3Zr2O12,即LLZO,由于具备离子电导率高且能与锂金属兼容,被广泛认为是一种很有前景的固态电解质材料。不过,生产高密度的LLZO电解质需要高达1200°C的烧结温度,既浪费能源又耗时,因而很难大规模生产LLZO电解质。此外,LLZO电解质很脆,其与电极材料之间的物理接触性能差,通常导致接触界面电阻高,极大了限制了其在全固态锂金属电池中的应用。   因此,东京都立大学的一个研究小组在Kiyoshi Kanamura教授的领导下,开始研发一种能够在室温下制作的柔性复合LLZO片状电解质。研究人员在薄薄的聚合物基材上浇上LLZO陶瓷泥浆,就像在吐司上涂上黄油一样。然后,再放到真空炉中进行干燥,之后,该款75微米厚的片状电解质会被浸泡到离子液体(IL)中,以提升其离子电导率。离子液体就是室温下的液体盐,众所周知,其导电率高,而且几乎不易燃,也不挥发。在该片状电解质内部,离子液体成功填补了结构中的微小缺口,桥接了LLZO颗粒,为锂离子形成一个有效通道;此外,还有效降低了阴极接触界面的电阻。在进一步研究中,研究人员发现,结构中的锂离子既在离子液体,也在LLZO颗粒中扩散,因而离子液体和LLZO颗粒都突出发挥了作用。该合成法非常简单,适合工业化生产,而且整个过程都在室温下进行,无需高温烧结。   尽管仍存在一些挑战,该研究小组表示,该柔性复合片状电解质所具备的机械鲁棒性和可操作性使其能够在更大的温度范围内工作,也使其成为了锂金属电池的理想电解质。新合成法非常简单也意味着可能会比预想的时间更早看到此种高容量的锂金属电池上市。