《植物固氮过程中重要环节被发现》

  • 来源专题:土壤、生物与环境
  • 编译者: 李卫民
  • 发布时间:2016-11-23
  • Scientists at the John Innes Centre have discovered an important component in the process of nitrogen fixation in plants. They have identified a key protein that facilitates the movement of calcium in plant cells. This movement of calcium signals to the plant that nitrogen-fixing bacteria are close by and triggers the development of nodules on its roots to house these bacteria.

    Nitrogen is the most abundant gas in the atmosphere and legumes are able to take nitrogen out of the air and incorporate it into their cells. This is possible because legumes have developed a symbiotic relationship with a particular type of soil bacteria that are housed within their roots. These bacteria take up (or 'fix') the nitrogen and pass it to the plant in exchange for sugars and other nutrients. This function enables legumes to grow with less nitrogen fertiliser.

    Professor Giles Oldroyd leads a research group at the John Innes Centre that aims to transfer the ability to fix nitrogen to other types of plants, like wheat or barley. This would increase growth and yield for these crops -- particularly in developing countries where farmers have less access to nitrogen fertilisers.

    It has long been known that the interaction between plants and bacteria depends on movement of calcium in plant root cells. This movement of calcium takes place in the central nucleus of plant cells. New research from the John Innes Centre lead by Dr Myriam Charpentier and Professor Giles Oldroyd discovered a set of critically important proteins, called cyclic nucleotide gated channel 15s (CNGC15s), which are essential for the movement of calcium into the nucleus. They found that the CNGC15s facilitate the calcium movement into the nucleus allowing the plant to transfer the information that the nitrogen-fixing soil bacteria are nearby. This enables the plant to initiate the cellular and developmental processes that facilitate bacterial accommodation, allowing establishment of the nitrogen-fixing symbiosis and thus nitrogen fixation. Although this calcium movement is limited to the nuclei of plant cells, it has a large impact on how the whole plant will grow.

    Professor Oldroyd said: "This discovery demonstrates that there is a CNGC protein located at the edge of the nucleus in plant cells which controls the movement of calcium into the nucleus. This is an important step towards understanding nitrogen fixation in legumes and this understanding will help us to develop more efficient crops."

    Dr Charpentier said: "Although the presence of nuclear calcium signals in plants was demonstrated more than a decade ago, the exact identity of the nuclear calcium channel has remained a mystery. This research identifies the first nuclear calcium channel in plants. Calcium signalling is not only important for symbioses but also for many other processes happening in the plant during development and in response to the environment. Knowing the identity of the nuclear calcium channel will now enable us to better understand how plants use nuclear calcium signals to grow and respond to their environments."

  • 原文来源:https://www.sciencedaily.com/releases/2016/05/160526151933.htm
相关报告
  • 《武汉植物园发现唇形科紫珠属新物种》

    • 来源专题:生物育种
    • 编译者:季雪婧
    • 发布时间:2024-06-18
    •     紫珠属(Callicarpa L.)隶属于唇形科(Lamiaceae),多为灌木至小乔木,少数种类为藤本或匍匐状。据统计,全世界约有紫珠属植物140余种,我国已报道分布53种(不包含变种、变型),主要生长在长江以南,少数种可延伸到华北至东北和西北的边缘。     我国紫珠属植物中很多种类是传统的中药材,是重要的中医药战略资源。除药用价值外,紫珠属植物花朵密集,果实颜色独特而艳丽,是良好的花果兼备的园林景观资源植物,具有较高的开发利用价值。近年来,紫珠属野生植物资源逐年锐减。通过引种、收集建立紫珠属植物种质资源圃,有利于科学保护该属植物的遗传多样性水平,有效对抗自然和人为因素引起的遗传侵蚀(有用基因的丧失)。     紫珠属植物资源的收集和保育,可以帮助研究者快速捕捉具有目标性状的种质,从而促进种质资源的高效评价、研究和利用。对紫珠属植物开展繁殖技术研究,可有效扩大种群数量。对具有优良性状和重要经济价值的种质资源,可进行良种、新品种及地方品种的审定,提供优良种源与繁殖材料。对紫珠属植物进行收集、保育、展示与研究,旨在推进科学、合理、有效地利用植物资源,增强人们身体健康,促进人们享受自然,充分体现出植物资源产生的生态、经济及社会效益。     在紫珠属植物驯化栽培的过程中,一种在武汉植物园磨山园区引种栽培长达10余年的紫珠,引起了园艺保育中心科研人员极大的关注。该物种因植株匍匐、叶片常绿、果实白色、叶柄间无横隔线等特征,与紫珠属其他物种有显著区别。科研人员查阅了其历史引种记录后,于2023年3月对原产地湖南永顺县杉木河林场进行了回访,结合详细的形态对照和分子系统学分析,确定其为唇形科紫珠属新物种,并依据模式标本产地将其命名为永顺紫珠(Callicarpa yongshunensis Wen B. Xu, Xiao D. Li & Yan Ling Liu)。     永顺紫珠在花序、腺体颜色和叶片形状上与黄腺紫珠(C.luteopunctata H.T.Chang)和老鸦糊(C.giraldii Hesse ex Rehd)相似,但它的植株匍匐、叶片常绿、果实白色等特征明显不同于黄腺紫珠和老鸦糊。此外,永顺紫珠因白色果实与长叶紫珠(C.longifolia Lamk)相似,但可以通过植株匍匐、叶柄间无横隔线及果实无星状短柔毛等特征与长叶紫珠区分。该新种以“Callicarpa yongshunensis (Lamiaceae): A new species from Hunan, China”为题,发表在国际植物分类学期刊Phytokeys上,武汉植物园园艺保育中心徐文斌工程师为第一作者,刘艳玲正高级工程师为论文通讯作者。近年来,武汉植物园致力于建设紫珠属植物种质资源库,通过种质交换、野外引种、委托引种等多种渠道,收集紫珠属植物共计49个分类单元(含变种、变型),已占国产紫珠属植物资源的75%。本次新物种永顺紫珠的发表,是武汉植物园紫珠属植物种质资源库建设过程中的重要成果之一。
  • 《遗传所等机构合作发现植物“抗病小体”》

    • 来源专题:生物科技领域知识集成服务
    • 编译者:陈方
    • 发布时间:2020-04-08
    • 植物抗病蛋白被发现至今已有二十多年,但人们仍然不清楚它们的工作原理。清华大学柴继杰团队、中国科学院遗传与发育生物学研究所周俭民团队和清华大学王宏伟团队联合研究,在植物免疫研究领域取得重要突破。合作团队发现由抗病蛋白组成的“抗病小体”(resistosome)并解析其电镜结构,从而揭示了抗病蛋白管控和激活的核心分子机制,为更好利用抗病蛋白提供了新的可能。相关成果以两篇长文形式,于2019年4月5日发表在《科学》期刊。国际植物抗病研究权威科学家Jeffery Dangl和Jonathan Jones撰写专文高度评价这一成果,发表在同期的《科学》期刊。 在前期研究结果的基础上,合作团队进一步以病原菌致病蛋白AvrAC与植物抗病蛋白ZAR1为体系研究植物抗病蛋白结构。经过多年协作攻关,成功地组装了包含激活ZAR1的复合物(抗病小体)。结构研究发现,ZAR1被AvrAC激活后,组装成含三个亚基共15个蛋白的环状五聚体蛋白机器,形成抗病小体。通过对静息态复合物的结构和功能解析,阐明了抗病蛋白由静息状态,经过中间状态,最终形成抗病小体的生化过程。合作团队紧密结合结构、生化和功能研究,揭示了抗病小体工作机制。比如,抗病小体形成后直接在细胞质膜上发出自杀指令,很可能是植物细胞死亡和免疫执行者。该项工作填补了人们25年来对抗病蛋白认知的空白,为研究其它抗病蛋白提供了范本。研究还发现,植物抗病小体的组装方式、结构与功能,与动物免疫中的炎症小体惊人地相似,展现了在不同生命形式中,进化对免疫形成的力量。 各种农作物病虫害,严重威胁农业生产。为了减少损失,农业生产中不得不大量施用化学农药,但这又对环境、人类健康和农业可持续发展带来了挑战。利用植物抗病蛋白,发展新的病虫害防控手段,有望大大减少化学农药的施用。抗病蛋白高分辨度结构和作用机制的解析,将为设计抗广谱、持久的新型抗病蛋白,发展绿色农业奠定核心理论基础。