《两种材料“联姻” 生出能变形变色、可自我修复“后代”》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-04-07
  • 四芳基琥珀腈(TASN)具备力致变色性能,聚硅氧烷基液晶弹性体(LCE)是一种经典的可逆变形材料,将两种材料结合,能产生类似于变色龙和壁虎“联姻”后的效果,即获得善于伪装、能自我修复的功能材料。

      作为伪装大师,蝰蛇毛毛虫可以变形成蝰蛇形状吓跑捕食者,变色龙可以根据环境变化调节自己的肤色……数百万年的自然进化,赋予许多生物不同的求生技能。

      生物的这种“主动避险”技能,也给了科研工作者研发新型仿生材料的灵感。近日,东南大学智能材料研究院院长、欧洲科学院院士、化学化工学院李全教授团队利用四芳基琥珀腈(TASN)和聚硅氧烷基液晶弹性体(LCE),合成TASN-LCE材料。他们用这种材料构建的海星状软驱动器,不仅可以随着温度变化而变形、响应热量变化和机械压缩变换颜色,还能自愈合、再加工。相关成果近期在线发表于化学领域国际顶级期刊《德国应用化学》。

      从生物的生存技能中获取灵感

      在自然界,伪装是一种非常重要的生存策略。而另一种生存技能——“断臂求生”则是通过牺牲部分肢体或器官以逃脱捕捉。一些海洋生物,如海星、章鱼和墨鱼等,幸运地具备了上述两种自我保护能力。

      受这些生物的启发,近年来,科学家们开发了多种仿生智能软驱动器,如人工章鱼、人造花卉和变色龙仿生器件等。

      “但是,多数仿生软驱动器只能执行一种或两种功能模式,而将可逆形变、连续运动、颜色伪装、自修复和可重塑等多种功能集成到单一的软驱动器系统中仍是极具挑战性的难题。”论文通讯作者之一、东南大学教授杨洪介绍,针对此难题,团队将一种特殊的材料——TASN中具有力致变色功能的基团键合到LCE中,构建了一种集多种功能于一体的TASN-LCE材料。

      “TASN具备力致变色性能,给它施加一个力或升高温度,它就会变成红色;温度降低,它的颜色又会逐渐变淡。而LCE是一种经典的可逆变形材料,它很有弹性,在外界刺激下,例如在红外光的刺激下会运动、变形。”杨洪说。

      材料“联姻”后具有伪装、自愈功能

      更有意思的是,TASN和LCE两种材料的结合,能产生类似于变色龙和壁虎“联姻”后的效果。

      “TASN与LCE组合成一个聚合物网络后,聚合物链上会有TASN基团。当温度升高到一定程度时,TASN基团会断裂、变红,产生自由基,形成单个的聚合物分子链。而当温度降低时,含TASN的聚合物分子链又会再次结合在一起。但重新连接时,自由基可以选择其他的链段,这就相当于TASN以一种内部再造的方式让聚合物材料重新愈合了。”杨洪解释,这种材料变化过程,可以使材料重复使用和再次加工成型,延长了材料的使用寿命,并能满足实际应用中对材料多功能特性的要求。

      在杨洪展示的一个实验片段中,记者看到,一个用TASN-LCE材料制成的、具有Q弹功能的海星形状的软驱动器,在受热后逐渐变红,在近红外光的照射下又慢慢向上翘曲、收缩。但当回到常温、消除照射后,“海星”又恢复如初。

      如果将TASN-LCE材料制成的软驱动器切割后重新拼接,经过一定时间和温度的修复,被切割的两段材料又会再度合二为一。“虽然宏观上看,材料又再次成型,但其实内部微观结构已经发生了变化。”杨洪说。

      “这种新材料有望应用于多功能仿生软体机器人、视觉传感器和人工伪装等领域。”杨洪表示,例如,在一些机械装置难以企及的区域,就可以让能变形的、可自愈合的软体机器人过去探测,继而进行远程智能作业。

      不过,杨洪坦言,新材料想完成产业化,还需要一个漫长的过程,首先要解决的就是新材料的制作成本问题。

      “合成TASN—LCE材料,过程很复杂,而且合成过程使用的化学试剂很昂贵,有的还有剧毒。”杨洪表示,想成为工业原料,这款材料还要进行抗疲劳性等力学性能测试,这些都需要进一步展开系统研究。

相关报告
  • 《三个研究小组,两种电子性质,一种材料》

    • 来源专题:纳米科技
    • 编译者:郭文姣
    • 发布时间:2020-06-16
    • 这是一种独特的材料的故事——由单一化合物制成,它在不同的表面以不同的方式传导电子,而在其中间完全不传导。这也是三个研究小组的故事——两个在魏茨曼科学研究所(Weizmann Institute of Science),一个在德国,以及他们之间形成的独特纽带。 这种材料属于15年前发现的一组被称为拓扑绝缘体的材料。这些材料在其表面导电,在其内部“体”中绝缘。但这两种特性是不可分割的:切断材料后,新表面将会导电,本体将保持绝缘。 大约五年前,努里特·阿夫拉罕博士(Dr. Nurit Avraham)开始在该研究所凝聚态物理系的海姆·贝登科普夫博士(Dr. Haim Beidenkopf)的新团队担任科学家。大约在那个时候,她和贝登科普夫在严Binghai Yan教授第一次对魏茨曼研究所进行科学考察时遇到了他。当时,严是德累斯顿马普固体化学物理研究所(Max Planck Institute for Chemical Physics of solid)材料科学家克劳迪娅·费尔瑟(Claudia Felser)教授小组的初级组长,她的实验室正在开发新型拓扑材料。Beidenkopf和他的团队专注于在单原子和单电子路径的尺度上对这些材料进行分类和测量,而阎则转向理论——预测这些材料的行为,并建立数学模型来解释它们不寻常的行为。 阿夫拉罕和贝登科普夫对揭示一种特殊类型的拓扑绝缘子的特性很感兴趣,这种绝缘子的化学结构是分层的。这些层如何影响电子在材料表面传导的方式?理论上,二维拓扑绝缘子的多层叠加可以形成三维拓扑绝缘子,其中部分表面导电,部分表面绝缘。严建议他们用他预测的一种新材料进行研究,这种材料后来在费尔瑟的实验室得到了开发。很快,魏茨曼和马克斯·普朗克小组开始合作。 阿夫拉罕领导了这个项目,他从Felser的实验室获得了材料样本,进行了测量,并与严一起工作,看看这些理论的预测是否会在实验中诞生。随着合作的深入,Beidenkopf和Avraham得到了物理系的再次邀请,严最终决定离开德国,将家人搬到Rehovot,在研究所的凝聚态物理系任职。“那个决定是一个转折点,让我走上了现在的职业道路,”严说。 在接下来的几年里,Beidenkopf, Avraham, Yan和Felser将在多个研究项目上合作,探索几种不同类别拓扑材料的性质。但要了解这种特殊的物质——铋、碲和碘的化合物——将是一项长期的工程。首先,严分析了材料的能带结构——换句话说,电子“允许”占据的状态。当这些带在电子体中交叉时——即所谓的“带反转”——它们阻止电子在内部移动,但使电子能够在表面移动。这种状态的“投影”产生于材料的大块表面上,这是赋予拓扑材料特殊属性的原因。 阿夫拉罕和贝登科普夫研究的是被劈开的样本,将新鲜的表面从分层结构中暴露出来。他们在实验室中使用扫描隧道显微镜(STM)来跟踪材料不同部分的电子密度。该理论预测,表面测量将揭示出一种表现为弱拓扑绝缘体的材料,因此在边缘是金属的,在顶部和底部表面是绝缘的。弱拓扑绝缘体是一类拓扑材料,已经被预测过,但还没有通过实验证明,所以该小组希望能发现边缘表面的这种特性。研究人员确实发现,这种材料在其裂边充当了弱拓扑绝缘体。但在他们的样本的顶部和底部,研究小组发现证据表明,这是一个强大的拓扑绝缘体,而不是之前预测的绝缘体。 这种材料能不能同时绝缘和导电,而且能以两种不同的方式导电?随着研究人员继续实验,用不同的方法测试材料,并确认他们最初的结果,他们和严一起继续困惑奇怪的结果。阿夫拉罕说,他们甚至一度测量了德累斯顿科技大学(Universitaet Dresden)初级教授安娜·伊萨瓦(Anna Isaeva)和亚历山大·佐格纳(Alexander Zeugner)独立培养的一批新样本,只是为了确保结果是普遍的,而不是某一批样本的偶然特性。 严说,他们最终的突破部分来自于另一个物理小组发表的一篇理论研究论文,该论文推测了这种双重物质可能如何发挥作用。拓扑材料有时根据其对称性(材料原子结构的一种性质)来分类。科学家们在表面上寻找这种对称性会被破坏的地方,这些地方是由于表面上的缺陷或不规则,通过电子的散射,这些缺陷或不规则会影响该点的属性,并突出了“保护”每个拓扑状态的对称性类型。 最后,理论和实验结合在一起,发表在《自然材料》上的一篇文章表明,这种材料实际上是两种不同的拓扑绝缘体。裂缝的暴露层,侧面创造了“台阶边缘”,引导电子进入特定的路径。当侧边受到时间反转和平移对称的保护时,顶部和底部受到晶体镜像对称的保护,从而产生一种电子可以移动的类金属状态。 虽然这种二合一的组合使得对材料进行拓扑分类颇具挑战性——这是此类测量的主要目标之一——但研究人员相信,其他新的拓扑材料也可能具有这种双重属性。这使得工程材料有可能同时具有多种理想的电学特性。 严说:“从技术上讲,这项工作很有挑战性,但故事本身却很简单。” “这也是一段伟大友谊的故事,以及当你能够进行如此密切的科学合作时会发生什么,”Avraham说。 “这一切都始于一个关于一种特殊材料的问题,”贝登科普夫补充道。
  • 《南加州大学开发出可自修复3D打印材料》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心 | 领域情报网
    • 编译者:冯瑞华
    • 发布时间:2019-02-15
    • 南加州大学维特比工程学院的研究人员开发出了可自修复的3D打印橡胶材料,可实现快速制造,这种材料遭遇破裂或刺穿可以进行自我修复。这种材料将为鞋类、轮胎、软机器人甚至电子设备制造带来改变契机,在缩短制造时间的同时提高产品的使用寿命。 新型材料使用基于光聚合的3D打印方法制造,即通过光把液态树脂材料固化成所需图形或形状。3D打印使用具有硫醇和二硫化物基团的弹性体油墨,其中硫醇基团在增材制造过程中促进硫醇-烯的光聚合,二硫化物基团在自愈合过程中实现二硫化物复分解反应。研究人员发现,通过在光聚合反应过程中添加氧化剂,硫醇开始转化为二硫化物化学基团。二硫化物在破碎时能够改造重组,从而实现自我修复。研究人员指出这两组材料之间的比例是实现自修复能力的关键。当氧化剂逐渐增加时,自愈行为变强,但光聚合行为变弱,这两种行为之间存在竞争。 研究人员发现了能够实现高度自我修复和相对快速的光聚合的比例并进行了试验。在短短5秒钟内,可以打印17.5毫米的正方形,在大约20分钟内完成整个物体,受损后可以在几个小时内自行修复。研究人员展示了该种材料在一系列产品上的性能,包括鞋垫、软机器人、多相复合材料和电子传感器。经验证,仅通过升高温度就可以减少材料愈合时间。该材料在被切成两半后,置于60℃环境下两小时即可完全愈合,并且强度和功能得以保持。 研究人员指出,在不同的温度下(40℃~60℃),材料愈合率接近100%,通过改变温度,可以控制愈合速度,即使在室温下,材料仍然可以自我修复。在实现3D可印刷软质材料之后,研究人员正在开发其他不同硬度的可自愈合材料,从现有的软橡胶到刚性硬塑料,这些可用于车辆部件、复合材料、甚至防弹衣。