《Nature,11月12日,Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility》

  • 来源专题:COVID-19科研动态监测
  • 编译者: zhangmin
  • 发布时间:2020-12-21
  • Molecular targeting of vulnerable RNA sequences in SARS CoV-2: identifying clinical feasibility

    G. Ian Gallicano, John L. Casey, Jiayu Fu & Samiksha Mahapatra

    Gene Therapy (2020)

    Abstract

    Covid-19 (SARS CoV-2) has become a deadly, world-wide pandemic. Although most who are infected survive, complications from the virus can be pronounced and long-lasting. To date, of all the respiratory viruses including influenza and coronaviruses, only influenza has had a drug (i.e., Tamiflu) specifically targeted to treat and prevent infection. As a result, additional agents that specifically target viral production and are clinically feasible are needed to alleviate respiratory viral infections. The idea of using a miRNA/siRNA molecular approach for treating various diseases was postulated over a decade ago; however, only within the past few years has it become feasible. One technological advancement has been the molecular linkage of lipophilic moieties to mi/siRNAs in order to bypass the need for enveloping these inhibitory RNAs in lipid-based transfection reagents, which could irritate the airway if inhaled. Here we show that siRNAs and miRNAs inhibit SARS CoV-2 spike protein production in a dose-dependent manner in both HEK293 cells and a primary human airway tracheal cell line. We also show that this inhibition is equally robust using a clinically relevant siRNA that does not need to be prepped with a transfection reagent.

  • 原文来源:https://www.nature.com/articles/s41434-020-00210-0
相关报告
  • 《Nature,9月4日,Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-09-15
    • Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease Lifeng Fu, Fei Ye, Yong Feng, Feng Yu, Qisheng Wang, Yan Wu, Cheng Zhao, Huan Sun, Baoying Huang, Peihua Niu, Hao Song, Yi Shi, Xuebing Li, Wenjie Tan, Jianxun Qi & George Fu Gao Nature Communications volume 11, Article number: 4417 (2020) Abstract COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (Mpro, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting Mpro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease Mpro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.
  • 《Nature,4月16日,CRISPR–Cas12-based detection of SARS-CoV-2》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-17
    • CRISPR–Cas12-based detection of SARS-CoV-2 James P. Broughton, Xianding Deng, Guixia Yu, Clare L. Fasching, Venice Servellita, Jasmeet Singh, Xin Miao, Jessica A. Streithorst, Andrea Granados, Alicia Sotomayor-Gonzalez, Kelsey Zorn, Allan Gopez, Elaine Hsu, Wei Gu, Steve Miller, Chao-Yang Pan, Hugo Guevara, Debra A. Wadford, Janice S. Chen & Charles Y. Chiu Nature Biotechnology (2020) Abstract An outbreak of betacoronavirus severe acute respiratory syndrome (SARS)-CoV-2 began in Wuhan, China in December 2019. COVID-19, the disease associated with SARS-CoV-2 infection, rapidly spread to produce a global pandemic. We report development of a rapid (<40 min), easy-to-implement and accurate CRISPR–Cas12-based lateral flow assay for detection of SARS-CoV-2 from respiratory swab RNA extracts. We validated our method using contrived reference samples and clinical samples from patients in the United States, including 36 patients with COVID-19 infection and 42 patients with other viral respiratory infections.