《Nature:开发出首个针对军团杆菌SdeA酶的抑制剂》

  • 来源专题:生物安全知识资源中心 | 领域情报网
  • 编译者: hujm
  • 发布时间:2018-05-28
  • 抗微生物剂耐药性(antimicrobial resistance, AMR)是世界范围内的一个主要医学问题,影响人体健康和经济状况。在一项新的研究中,来自德国法兰克福大学的Ivan Dikic教授及其团队报道了一种抵抗细菌的新策略。他们揭示出一种军团杆菌毒素的分子作用机制并开发出首个抑制剂。相关研究结果于2018年5月23日在线发表在Nature期刊上,论文标题为“Insights into catalysis and function of phosphoribosyl-linked serine ubiquitination”。

    随着耐药性持续蔓延,常见的感染如肺炎和沙门氏菌病越来越难以治疗。导致这种抗微生物剂耐药性危机的因素有两个:人类使用抗生素的疏忽和30多年来未开发出真正的新型抗生素。根据世界银行近期发布的一份报告,到2050年,抗微生物剂耐药性可能会降低全球国内生产总值(GDP)1.1%~3.8%。

    科学工作正在进行,以便更好地控制微生物感染。一种有前景的方法是通过阻断给宿主细胞和组织造成损伤的微生物过程来限制这种损伤。Dikic实验室在过去的十年里一直在这个领域开展研究。Dikic说,“我们认为我们能够找到新的治疗方法:利用合理设计的药物靶向一类特定的细菌效应物作为对传统抗生素的补充。以这种方式,致病性损伤就能够减少,这有助患者更好地耐受细菌感染。这是一个相对较新的领域,正在科学界吸引着越来越多的关注。”

    为了证实这种策略是解决细菌感染的一种可行方案,Dikic团队研究了已知会引起肺炎并对免疫功能低下患者是特别危险的军团杆菌。近期,这些研究人员参与确定了军团杆菌用来控制它的宿主细胞的一种新的酶学机制。论文共同作者、作为Dikic团队成员之一的Sagar Bhogaraju博士报道,“我们证实军团杆菌SdeA酶是一种有毒的细菌效应物。它通过靶向泛素系统促进细菌扩散,其中这种泛素系统是细菌细胞抵抗应激的强大保护机制之一。”

    在这项新的研究中,Dikic团队报道他们取得了进一步的突破:他们成功地解析出SdeA的原子结构。论文第一作者、作为Dikic团队成员之一的Sissy Kalayil博士说,“这种酶是非常独特的,并通过一种两步机制来催化反应。我们的结果是非常令人兴奋的,这是因为它们揭示出这种机制的原子细节,并使得合理设计抑制剂成为可能。”

    这些研究人员还揭示出这种细菌效应物很可能如何在宿主细胞内选择它的靶蛋白,并通过让泛素附着到这些靶蛋白上来发挥它的作用。他们还开发出第一个在体外阻断这种反应的抑制剂。Dikic评论道,“我们的基本发现允许我们证实这种酶是可药靶向的。不过,这是初步发现。在我们能够在治疗上利用这种新机制之前,我们仍然有很长的路要走。我们肯定不会就此罢手。”最有可能的是,军团杆菌并不是唯一使用这种机制的细菌。

  • 原文来源:https://www.nature.com/articles/s41586-018-0145-8
相关报告
  • 《Anal Chem:开发出高通量荧光测试方法来筛选CRISPR/Cas9抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-25
    • CRISPR/Cas9基因编辑技术可能有朝一日治疗目前被认为是无法治愈的疾病。负责切除致病性的DNA片段的Cas9蛋白长期留在体内是不安全的。这就是为什么科学家们正在寻找方法来缩短这种蛋白在消除它的靶标后停留在体内的时间。为了这个目的,在一项新的研究中,来自美国桑迪亚国家实验室的研究人员开发出首个同类型的测试方法,它能够廉价地快速准确地筛选数千种分子是否能够有效地关闭这种DNA切割蛋白。相关研究结果近期发表在Analytical Chemistry期刊上,论文标题为“Versatile High-Throughput Fluorescence Assay for Monitoring Cas9 Activity”。 DNA切割:我们如今能够观察它 CRISPR/Cas9基因编辑技术是建立在细菌的免疫系统之上的。通过使用一种俗称为CRISPR的系统,细菌能够保存来自入侵病毒的DNA片段。当病毒再次发起攻击时,Cas9蛋白经向导RNA(gRNA)招募后结合、切割和破坏病毒DNA。 科学家们如今能够像分子剪刀那样利用Cas9和gRNA移除发生突变的DNA序列,并能够校正遗传疾病。这为治疗从癌症到遗传疾病(如肌肉萎缩症和囊性纤维化)到病毒感染(如埃博拉病毒)等各种疾病打开了大门。 然而,Cas9在切割它的靶标后在体内停留的时间越长,就越有可能找到并切割不应被切割的类似DNA片段,这可能导致疾病。 找到在Cas9完成它的预定任务后能够关闭它的化学物的第一步是开发发现这些化学物的工具。桑迪亚国家实验室生物化学家Kyle Seamon解释道,他们开发出的这种测试方法将两种化学物放在一个DNA片段的两条相反的链上。在一条DNA链上,这种测试方法添加一个发出光线的荧光团(第一种化学物),而在另一条DNA链上,它添加一个吸收这个荧光团发出的光线的猝灭剂(第二种化学物)。 接下来,这种测试方法添加了一种潜在的Cas9抑制剂。如果这种抑制剂不起作用,那么Cas9将切割这个DNA片段,将这个荧光团与这个猝灭剂分离开来,从而使得这种测试方法在30分钟内发出明亮的光线。如果这种抑制剂有效地发挥作用,那么这种测试方法将不会发光。 不过在这种测试方法能够给出这种最终结果之前,这些研究人员必须添加一种能够导致Cas9从DNA上释放下来的化学物。Seamon说,“Cas9与DNA之间结合得非常紧密,即便DNA已被切割,它也会将切割后的DNA保持在一起。它不会放手。” 由于这个原因,很少有人开发出Cas9测试方法来测试DNA切割,而且也已存在的测试方法并不能够用于高通量应用中。这种新的测试方法一次可筛选一到两种化学物。通过这种方法,这些研究人员迄今为止已能够筛选将近20万种化学物抑制Cas9的能力,并鉴定出6种具有抑制效果的化学物。 继续寻找'关闭开关' 制药行业和农业行业对让基因编辑更安全非常感兴趣,而且世界各地的科学家们正为此采取多种方法。 天然存在的抗CRISPR是小蛋白。然而即便是小蛋白分子也是比较大的,因此如果不借助于单独的化学载体(如纳米颗粒),它们就不能被运送到细胞中进行治疗。鉴于蛋白运送,特别是抗CRISPR运送,是一个重要的生物技术目标,桑迪亚国家实验室的科学家们已集中精力开发能够将大分子运送到细胞中而不会引起任何不良反应的颗粒。 通过以各种方式寻找Cas9抑制剂,这些研究人员希望增加找到无副作用且可在小鼠和人体临床试验中制造和使用的抑制剂的可能性。当前,这些测试方法仅能够在体外的试管中开展。有朝一日,他们希望这些抑制剂将在世界各地的医生办公室中找到,同时开发出简单的治疗方法来治疗之前被认为是无法逆转的疾病。
  • 《开发出抵抗流感病毒的广谱抑制剂》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:huangcui
    • 发布时间:2018-01-09
    • 流感病毒可分为甲型流感病毒(简称甲流病毒)、乙型流感病毒、丙型流感病毒和近年来才发现的丁型流感病毒。就甲流病毒而言,它又可分为第1组(H1、H2、H5、H6、H11、H13和H16)、第2组(H8、H9和H12)、第3组(H3、H4和H14)和第4组(H7、H10和H15)甲流病毒。流感病毒每年导致全世界高达50万人死亡。 在一项新的研究中,来自美国斯克里普斯研究所(TSRI)和比利时杨森研发公司(Janssen Research & Development)的研究人员设计出能够中和一系列流感病毒毒株的人工肽分子。这些设计的肽分子有潜力被开发为靶向流感病毒的药物。相关研究结果于2017年9月28日在线发表在Science期刊上,论文标题为“Potent peptidic fusion inhibitors of influenza virus”。论文通信作者为TSRI结构生物学教授Ian Wilson和杨森研发公司的Maria J. P. van Dongen。 这些开发出的肽分子阻断大多数传播的第1组甲流病毒(group 1 influenza A virus)的传染性,包括H5N1,即在亚洲已导致上百人感染和死亡的一种禽流感病毒毒株;在2009~2010年导致全球流行病的H1N1猪流感病毒毒株。 这些研究人员设计了这些肽分子来模拟两种近期发现的“超级抗体(super-antibodies)”的病毒结合区域。已知这两种超级抗体能够中和几乎所有的甲流病毒毒株。抗体是一种大分子蛋白,它的生产成本很高,因此通过注射或灌注加以给送。然而,“这项研究开发的这些肽分子有潜力在未来成为作为丸剂加以给送的药物”。 Wilson说,“我们的研究结果证实,制造出在本质上发挥这些大分子广泛中和抗体发挥的作用的小分子是一种非常令人兴奋的且有前景的抵抗流感病毒的策略。” 这两种被称作FI6v3和CR9114的抗流感病毒超级抗体分别是在2011年和2012年发现的。从那以后,Wilson实验室与杨森研发公司和全世界的其他结构生物学实验室一道在原子分辨率下绘制出这两种广泛中和抗体和其他的广泛中和抗体如何结合到流感病毒上。 近期,来自美国华盛顿大学的David Baker领导的一个研究团队利用这些抗体结构数据来设计新的小于这些抗体的蛋白,而且这些蛋白以一种类似的方式结合到流感病毒上,并且中和一系列流感病毒毒株。在这项新的研究中,来自TSRI和杨森研发公司的研究人员旨在开发更小的靶向流感病毒表面上相同靶区域的非蛋白分子。 在经过几轮分子设计和合成、病毒结合测试和原子水平上的结构评估之后,这些研究人员开发出一组由四种肽分子组成的肽,每种肽分子具有环状的结构,而且作为潜在的流感病毒阻断分子很好地发挥着作用。 这些肽分子对一系列第1组甲流病毒具有很强的结合亲和力,而且在实验室实验中具有强效地中和这些病毒感染的能力。 这些肽分子也整合了在天然蛋白中没有发现的氨基酸构成元件。它们的非天然氨基酸和它们的环状结构使得它们相对而言抵抗能够快速地清除血液中的肽类药物的酶。在这四种肽分子中,一种最为优化的被称作P7的肽分子当接触小鼠或人血浆时或者当被注射到小鼠体内时,能够存活数小时。 Wilson实验室博士后研究员Rameshwar U. Kadam说,“这些肽分子具有药物类似的稳定性,而且将是在动物模型中进一步测试抗病毒功效的合适候选药物。”Kadam和杨森研发公司首席科学家Jarek Juraszek是这篇论文的第一作者。 这些肽分子,就像旨在模拟的这两种超级抗体那样,结合到一个位于流感病毒的主要包膜蛋白血凝素(hemagglutinin)下面部分上的被称作疏水性茎沟(hydrophobic stem groove)的位点上。在这个位点上的分子结构在流感病毒毒株之间并不会发生很大的变化,这是因为它在一种形状改变的过程中发挥着至关重要的作用。这种形状改变的过程允许流感病毒穿透宿主细胞,启动感染。通过结构评估,Kadam发现这些肽分子阻止这种形状改变,因而阻止穿透宿主细胞。 Kadam说,“一种靶向感染第一阶段的药物将是对现存的靶向感染后期阶段的抗流感病毒药物的补充。” 这些肽分子并不像它们模拟的这两种超级抗体那样全面地结合到它们的病毒靶标上。比如,对第2组甲流病毒而言,这些肽分子缺乏这两种超级抗体推开或躲避位于血凝素表面上的阻断靶位点关键部分的糖分子的能力。然而,Kadam说,进一步的研究可能开发出抵抗第1组甲流病毒、第2组甲流病毒和甚至乙型流感病毒的肽分子。 Kadam说,“我们能够利用抗体表面上的结构信息制造更小的分子,这些分子具有几乎相同的结合亲和力和中和流感病毒的广谱性。” Wilson说,“在这个领域里,人们之前对我们能够利用这些小分子获得如此好的结果持怀疑态度,但是这项研究证实我们能够做到这一点。”