《为了研制更好的流感疫苗,科学家们将注意力集中在形状像蘑菇的微小流感蛋白上》

  • 来源专题:重大慢性病
  • 编译者: 李永洁
  • 发布时间:2025-03-31
  • 1945 年,密歇根大学病毒学家托马斯·弗朗西斯 (Thomas Francis) 和他的合作者乔纳斯·索尔克 (Jonas Salk)(后来因开发出第一种脊髓灰质炎疫苗而享誉全球)发明了第一种流感疫苗,此后不久,科学家们便开始了长达数十年的探索,以研制出更好的流感疫苗。

    在全球范围内,季节性流感的发病率和死亡率令人震惊。据估计,每年有 10 亿人感染流感,导致 29 万至 64 万人死亡。仅在美国,这个流感季节就被认为是自 2009 年以来最严重的一次。据美国疾病控制和预防中心 (CDC) 统计,自 10 月以来,估计已有 65 万人住院,死亡人数超过 1.6 万人。预计在 5 月流感季节结束之前,这些统计数据还会增加。

    疫苗学家长期以来一直在推动研制一种对季节性和大流行性流感病毒株有效的通用流感疫苗。

    现在,在美国国家过敏和传染病研究所疫苗研究中心进行的一系列实验中,科学家们正在报告他们最终希望研制出一种更有效的流感疫苗的工作。

    这意味着一种能够引发强烈免疫反应并且不需要季节性更新的疫苗。该中心的科学家已经将目标锁定在三种基于高度保守的流感蛋白亚型的候选疫苗上。该团队的研究是首次测试这些亚型的前景,并且正值美国生物医学研究(尤其是疫苗研究)不确定的时期。

    “开发通用流感疫苗的一个主要障碍是流感病毒的多样性,禽流感病毒反复蔓延至哺乳动物物种,包括近年来美洲发生的几例人类 H5 感染病例,凸显了流感大流行的潜在风险。

    甲型流感病毒和乙型流感病毒可导致人类感染,但甲型流感病毒还会感染多种动物。事实上,野生鸟类是大多数甲型流感病毒(包括 H5N1)和其他禽流感病毒株的天然宿主。该团队认为,选择保守区域与强效抗体攻击相关的潜在疫苗株可能会更好地预防季节性流感和大流行性流感。

    他们的研究集中在流感病毒表面的一种微小蛋白质上:血凝素,这对通用流感疫苗研究来说并不新鲜。事实上,数十种实验性通用疫苗和大流行性疫苗都是基于这种蛋白质。现在的不同之处在于,该团队专注于过去很少进行分析的血凝素亚型。

    血凝素是两种重要的流感病毒表面蛋白之一。流感科学家感兴趣的甚至不是整个蛋白质,而是蛋白质的“茎”区,该区域长期以来一直是研究的主要目标。茎在各种流感病毒株中遗传稳定。

    血凝素的形状可以想象成一个亚微观蘑菇,茎顶部有一个宽阔的头部。无数血凝素蛋白的头部与另一种蘑菇形流感蛋白——神经氨酸酶一起排列在病毒的表面部分。

    在感染过程中,血凝素负责将病毒附着在宿主细胞上。神经氨酸酶是一种酶,它能从已感染的细胞中切割糖唾液酸,使新产生的流感病毒逃出细胞,传播并感染其他病毒。

    世界各地的疫苗学家一直在竞相开发通用流感疫苗,他们已将血凝素作为疫苗的基础蛋白。这些研究人员将血凝素亚型分为两大类,简称为第 1 组和第 2 组。

    第 1 组中有 12 种血凝素亚型,它们来自多种不同的流感病毒:H1、H2、H5、H6、H8、H9、H11、H12、H13、H16、H17 和 H18。第 2 组包括 6 种:H3、H4、H7、H10、H14 和 H15。

    保守的流感血凝素茎是交叉中和抗体的靶标,现在用于预防流感大流行的疫苗策略。对第 1 组干细胞的抗体反应已被广泛描述,但对第 2 组干细胞的了解甚少。

    上述研究涉及第 2 组干细胞。尽管干细胞的尺寸很小,但它的长度上具有引发强大抗体反应的特定区域。研究团队分析了基于三种第 2 组血凝素亚型的三种疫苗。研究目标是双重的:确定这些疫苗引发抗体反应的有效性,并精确绘制出抗流感抗体聚集在干细胞的哪个位置。这些位点被称为表位,它们对于确定抗流感抗体的聚集至关重要。


  • 原文来源:https://medicalxpress.com/news/2025-03-quest-flu-shot-scientists-tiny.html
相关报告
  • 《流感病毒上的“小尾巴” 或让通用流感疫苗成真》

    • 来源专题:生物安全知识资源中心—领域情报网
    • 编译者:hujm
    • 发布时间:2022-02-24
    • 作为RNA病毒的流感病毒可谓非常“善变”。不过近日传来一个好消息,美国斯克利普斯研究所、芝加哥大学和西奈山伊坎医学院的科学家们发现了流感病毒的一个“阿喀琉斯之踵”,这也为他们寻求通用流感疫苗方面的研究带来了帮助。研究人员在《自然》杂志上报告称,即便病毒每年都发生变异,但关注病毒长期被忽视部分的抗体(研究人员称之为锚抗体),有可能识别出各种各样的流感毒株。   流感病毒为何如此“善变”   虽然都被称为感冒,但流感可比普通感冒“破坏力”大多了。感染流感病毒后,患者会突发高热、咳嗽、头痛、全身无力、肌肉疼痛等。而且流感很容易引发各种严重的并发症,包括肺炎、中耳炎、心肌炎、脑膜炎等。   据世界卫生组织(WHO)2015年统计的数据,全球每年约有5%—10%的成人和20%—30%的儿童罹患季节性流感,导致全球出现300万—500万重症病例。每年约有25万—50万人因流感而死亡。   不过幸运的是,流感可以通过接种疫苗预防。只是流感疫苗不像水痘、白喉等疾病的疫苗一样,接种一两次就可以一劳永逸,流感疫苗需要每年接种。其中一个重要原因就是流感病毒发生突变的频率较高。   “流感病毒是RNA囊膜病毒,可分为甲、乙、丙、丁四型。其中甲型与乙型会在人类中引起较严重的疾病,是造成人类疾病的主要病原。”湖北大学生命科学学院教授陈纯琪介绍,由于流感病毒的基因组是RNA,因此在复制的过程中其非常容易发生突变。   在流感病毒外壳上的血凝素蛋白与神经氨酸酶,不但是病毒的主要抗原,更与病毒的感染和复制息息相关。   “这两个蛋白质就像是流感病毒感染细胞时一进一出的两把钥匙。”陈纯琪解释说,流感病毒感染细胞时,需要血凝素蛋白与细胞表面受体结合,而当病毒在细胞内完成复制扩增,要去感染更多细胞的时候,则需要神经氨酸酶的作用。   以病毒种类繁多且经常发生变异的甲型流感病毒为例,目前已经被鉴定出来的甲型流感病毒血凝素蛋白有18种,根据发现时间先后编号,分别被命名为H1到H18,而神经氨酸酶有11种,被命名为N1到N11。比如新冠病毒暴发前,让人类如临大敌的猪流感H1N1就携带了一号血凝素蛋白(H1)和一号神经氨酸酶(N1)。   “流感病毒的变异也不是随心所欲的,像甲型流感有小变异和大变异两种,其中造成抗原小变异的抗原漂移,只在原先的基因上发生点突变,产生局部的改变。而大变异则是造成抗原大变异的抗原转变,这种变异影响范围大,可以把整个血凝素蛋白和神经氨酸酶彻底换成别的种类,比方说H1换成H3,N1换成N2。”陈纯琪说。   血凝素蛋白位于病毒颗粒最外层,又与病毒感染细胞有关,所以人体免疫系统只要能够产生中和抗体来识别并阻挡血凝素的作用,就能够有效防止病毒感染。   “然而流感病毒能够通过抗原变异的过程来改变血凝素蛋白,以此逃脱免疫系统的识别与攻击,因此,尽管都是H3N2病毒株,也有可能在病毒的基因发生了一些突变之后,出现感染过H3N2病毒株的人再次受到感染的情况。”陈纯琪表示,这便是每年反复发生季节性流感的原因。   小变异发生的频率较高,属于量变,可引起流感的中、小型流行。抗原大变异发生的频率较低,大概每隔十几年才出现一次。但如果发生了抗原转变导致新亚型出现,或者是较长时间没有出现的旧亚型再度出现,大部分的人群在这种情况下缺乏相对应的免疫力,就可能会发生流感的大流行。   下季流行流感病毒株需预测   因为流感病毒容易发生变异,所以每一年造成季节性流感的病毒或多或少都有些差异。   现行的流感疫苗涵盖了H1N1以及H3N2这两个主要的甲型流感病毒以及一或两个乙型流感病毒。陈纯琪介绍,包含一种乙型流感病毒的称为三价疫苗,包含两种乙型流感病毒的称为四价疫苗。   根据流感病毒的变异,每年接种的流感疫苗都会做出相应的改变。WHO每年都会分析探讨如何选用下一季流行的流感疫苗株。   WHO通过分析全球的数据来预测下一季可能流行的流感病毒株;而后将新的病毒株与标准病毒株进行基因重组和驯化,制造出可用于生产的新病毒疫苗株。该疫苗株要带有变异病毒的外壳蛋白(即血凝素蛋白与神经氨酸酶)来引起人体的抗体保护反应,同时又要保有大部分标准病毒株的基因,如此才能很好地在受精鸡胚中扩增;再将疫苗病毒株注射至受精鸡胚中以培养扩增,之后收集病毒并进行活化;最后经检验合格,制成流感疫苗。   目前各大疫苗制作厂多使用受精鸡胚来大量制造流感病毒疫苗。“这种制造流感疫苗的技术稳定成熟,但制作需要使用大量合格的新鲜受精鸡胚,对鸡蛋严重过敏的人不可接种。”陈纯琪介绍,整个疫苗制作周期至少20周,如果突发流感疫情可能会供不应求。最关键的是如果一开始的预测不准确,便会影响整季的疫苗接种效果。   锚抗体或能识别多种流感病毒   尽管流感病毒很狡猾,但也并非无懈可击。   “流感病毒靠外壳上的血凝素蛋白来感染人体细胞,而针对血凝素蛋白产生的抗体也是阻挡病毒感染最重要的免疫反应。”陈纯琪解释,血凝素本身是一个长条型的蛋白质,形状和功能都像一把钥匙,最前端是负责与细胞受体结合的头部结构域,接着是一段长柱状的茎部结构域,最后端则有一个锚钉结构域,如此整个血凝素蛋白才能够固定在病毒的外壳上。   头部结构域是人体的中和抗体主要攻击的部位,但是头部区也最容易发生突变,变异之后就能够逃逸人体免疫系统的识别。相对于头部区,茎部较不容易发生突变,所以针对茎部区所产生的抗体可以对抗多种变异的流感病毒株,这就为设计通用流感病毒疫苗开启了一个新的思路。   科学家们将不同的头部区域与H1茎部区融合在一起,做成了嵌合型的血凝素蛋白,然后同样使用受精鸡胚来生产疫苗毒株。前期的临床试验已经证实,这种新型的疫苗是安全的,接种之后可以有效引发人体产生对抗病毒的抗体。   在《自然》近期发表的最新研究中,科研人员分析了358个不同的人源单克隆抗体,这些人都接种过传统或新型通用疫苗,或者是感染过流感病毒,所以体内带有对抗流感病毒的抗体。   “这些抗体有的可以识别血凝素头部区,有的可以识别茎部区,而其中有一组是可以识别锚钉部的抗体,作者称之为锚抗体,这是首次鉴定出的可以识别血凝素蛋白头部和茎部以外区域的抗体。”陈纯琪介绍,科研人员进一步测试这些锚抗体是否可以识别不同的流感病毒,结果发现锚抗体不但能中和多种H1变异病毒,也能中和H2以及H5病毒株。   科研人员更进一步使用小鼠的动物模型证实,这种抗体对三种不同的H1流感病毒株都有保护效果。由此证明,锚抗体具有预防病毒感染的效力。“而这些发现也说明了血凝素的锚钉区,是一个能够诱发保护性抗体的抗原,所以未来的通用流感疫苗制造应重点考虑将锚钉区纳入设计。”陈纯琪说。   最后陈纯琪表示,开发通用流感疫苗来对抗所有变异毒株,是所有设计流感病毒疫苗科学家共同的目标。理论上,只要在疫苗的成分中包含一个或多个不易变异又能够引起保护性中和抗体的区域,就能够达到预防大部分流感病毒的效果。科学家们一直在努力寻找这样的有效抗原区域,而近期的这篇论文正是证明了这个方向的可行性,并且为设计更加有效的通用流感疫苗提供了一个新的思路。
  • 《有限复制流感疫苗研制方面取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-05-18
    • 甲型流感病毒感染严重威胁全球公共健康并造成重大经济损失,而疫苗仍是防控流感最有效的手段。干扰素敏感(IFN -sensitive)和复制缺陷(replication-incompetent)流感疫苗因其在正常细胞中无法进行有效复制,却能够诱导机体产生强烈的免疫反应而备受关注,这类疫苗被认为将很有可能替代传统的灭活疫苗和减毒疫苗。非结构蛋白1(NS1)是甲型流感病毒的致病因子之一,在病毒的生命周期中发挥着多种重要作用,尤其是能够通过抑制RIG-I介导的I型IFN的产生来拮抗宿主的天然免疫反应。IFN敏感疫苗正是利用这一理论依据,将流感病毒的IFN拮抗功能去除,从而抑制病毒在体内的有效复制。目前主要使用IFN-α/β缺陷的Vero细胞或IFN功能低下的低日龄SPF鸡胚来繁殖此类疫苗病毒,但仍然无法满足此类疫苗病毒的生产需求。 中国科学院微生物研究所刘文军课题组长期从事流感病毒的复制调控机制研究,前期围绕流感病毒NS1拮抗宿主抗病毒天然免疫反应的机制开展了系列研究工作(Journal of Virology,2016,90:6263– 6275;Cellular Microbiology,2017,19(2),e12643)。而该研究则利用NS1拮抗宿主抗病毒天然免疫的功能,制备了有限复制流感疫苗并建立了生产该类疫苗的细胞系。 该研究利用反向遗传技术在RIG-I敲除的293T细胞中成功包装出NS1蛋白38位和41位氨基酸双突变(NS1 R38A/K41A)的重组流感病毒,其包装效率要远远高于其在野生型293T细胞中的效率。并且,该重组病毒几乎丧失了IFN拮抗功能,在MDCK、A549甚至IFN-α/β缺陷的Vero细胞中传3-6代后即被细胞清除。为了能够大量生产此类有限复制的IFN敏感流感病毒,该团队利用Tet-On 3G系统建立了稳定表达野生型NS1蛋白的Vero细胞系,NS1 R38A/K41A病毒在该细胞系上能够稳定传20代以上并保持较高的病毒滴度。动物实验表明,NS1 R38A/K41A病毒能够感染小鼠并诱导强烈的天然免疫和获得性免疫,并抵抗A/WSN/33 (WSN)、A/Puerto Rico/8/1934 (PR8)和 A/California/04/2009 (CA04)流感病毒的再次攻击,但NS1 R38A/K41A病毒的致病力几乎丧失,并很快被排出体外。 综上所述,RIG-I敲除的293T细胞有助于NS1 R38A/K41A流感病毒的包装,稳定表达NS1的Vero细胞有助于NS1 R38A/K41A流感病毒的有效复制,该系统可以用于包装并生产有限复制的IFN敏感疫苗病毒。NS1 R38A/K41A流感病毒在正常细胞和小鼠体内的复制是有限的,是一种潜在的安全有效的干扰素敏感疫苗。 上述研究于5月1日在线发表在Frontiers in Cellular and Infection Microbiology上,研究员刘文军和副研究员孙蕾为文章通讯作者,博士生陈璨为第一作者。该研究得到国家重点研发计划、国家自然科学基金及中国科学院B类先导科技专项等项目的资助。