《Cell | 泛素修饰蛋白Urm1调控应激介导的凝聚相变》

  • 来源专题:战略生物资源
  • 编译者: 李康音
  • 发布时间:2024-06-28
  • 2024年6月27日,马克思普朗克生物化学研究所F. Ulrich Hartl、Manajit Hayer-Hartl、Sae-Hun Park共同通讯在Cell发表题为Stress-dependent condensate formation regulated by the ubiquitin-related modifier Urm1的文章,揭示了细胞通过形成这些凝聚相来应对压力的机制。这项研究的重点是泛素相关的修饰蛋白Urm1,它在应激条件下缩合物的形成中起着关键作用。

    首先,作者揭示了在热应激下,存在不溶性、谷氨酰化蛋白质的积累,这表明Urm1修饰是对应激的快速反应。这种修饰不是随机的,因为该研究确定了多种Urm1靶蛋白,包括那些参与RNA结合、核仁结构和功能的蛋白。这些发现表明,Urm1是压力下蛋白质稳态的主要调节因子。此外,研究表明,Urm1本身在应激反应中形成细胞核和细胞质焦点,表明Urm1积极参与缩合物的形成。这些焦点不是静态的,而是可以与其他蛋白质结合的动态结构,例如在核周凝聚物和应激颗粒中发现的蛋白质。Urm1修饰靶蛋白的能力促进了这种聚结,导致它们被分配成缩合物。

    这项研究还揭示了Urm1及其E1样酶Uba4对pH变化的反应机制——pH变化是应激条件的常见特征。在酸性pH下,Urm1和Uba4相分离,与靶蛋白形成共缩合物。这种相分离对于靶蛋白的有效氨酰化至关重要,因为它创造了有利于修饰反应的局部环境。体外实验进一步支持了这一模型,证明Urm1、Uba4和靶蛋白可以共同组装成缩合物。这种共组装是应激反应的关键步骤,可以对缩合物中的蛋白质进行特定修饰,增强其稳定性和功能。

    最后,该研究表明,Urm1对细胞适应性和应激恢复能力至关重要。缺乏Urm1的细胞在凝结物形成中表现出缺陷,损害了它们承受应力的能力。这强调了Urm1在维持蛋白质稳态中的重要性,并强调了其作为分子“粘合剂”的作用,在压力下驱动保护相分离。

    总的来说,这项研究提供了对Urm1如何在压力条件下调节缩合物形成的全面理解。作者揭示了一个复杂的调控网络,涉及Urm1与靶蛋白的共价和非共价相互作用,最终有助于应激细胞的生存。这些发现为探索生物分子缩合物在各种生物过程和疾病中的作用开辟了新的途径,为潜在的治疗干预措施铺平了道路。

  • 原文来源:https://www.cell.com/cell/fulltext/S0092-8674(24)00649-4
相关报告
  • 《蛋白酰化修饰调控天然产物生物合成研究取得进展》

    • 来源专题:生物安全知识资源中心 | 领域情报网
    • 编译者:hujm
    • 发布时间:2018-08-24
    • 近期,中国科学院上海药物研究所谭敏佳课题组与华东理工大学叶邦策课题组合作研究,揭示了蛋白赖氨酸酰化修饰在天然产物的生物合成代谢通路中的调控新机制,研究工作发表在8月Cell Chemical Biology(25(8): 984-995. doi: 10.1016/j.chembiol.2018.05.005)和5月ACS Chemical Biology(13(5):1200-1208. doi: 10.1021/acschembio.7b01068)杂志上。 细胞重要中间代谢产物酰基-CoA类化合物,作为供体直接参与生物体内的蛋白酰化修饰,从而调控多种重要生物学过程,如表观遗传、能量代谢、精子发育等,是目前生命科学研究的热点之一。在生物体次级代谢产物生物合成过程中,酰基-CoA扮演的角色一直被认为是聚酮类、生物碱类、脂肪酸类及异戊二烯类等多种重要天然产物的合成前体,然而目前人们对其作为酰化修饰供体调控次级代谢产物合成过程的作用认知明显不足。 两篇文章分别以丙酰-CoA依赖性的大环内脂类红霉素、丙二酰-CoA依赖性的多酚类赤松素以及丁酰-CoA依赖性的丁醇生物合成过程中,丙酰化修饰、丙二酰化修饰以及丁酰化修饰为研究对象,通过蛋白质组学技术系统性解析蛋白酰化修饰在不同化学骨架类型的天然产物生物合成过程中的形成机制及调控功能。证明了生物体内高浓度酰基-CoA的积累在有助于补充产物合成前体的同时,也会造成蛋白酰化修饰引起的反馈调控,导致关键酶受到抑制并影响产物产率。这种由于胞内代谢物浓度的“过载”引起生物体代谢失衡的状态,广泛存在于多种不同化学骨架类型天然产物生物合成过程中,并存在于内源性产物合成途径和人工构建产物合成途径中。此外,进一步的研究表明,基于酰化修饰底物和修饰酶的翻译后修饰代谢工程策略(PTM_ME),如保护修饰位点、优化修饰酶系统等,有助于缓解胞内碳流“过载”的压力,相对提高目标产物产量。 这两项研究工作首次揭示了蛋白酰化修饰在次生代谢产物生物合成调控中的普遍性,并为代谢工程提供了从翻译后修饰水平改造的全新策略。 谭敏佳和叶邦策为两篇文章的共同通讯作者,上海药物所博士后徐骏宇和华东理工大学博士生徐娅在两位老师的指导下合作完成该项目。参与这项工作的还有上海药物所叶阳课题组和芝加哥大学教授赵英明。此外,该项目受到国家自然科学基金委重大研究计划、面上项目、国家重点研发计划“精准医学研究”重点专项和中国博士后科学基金的支持。
  • 《 研究揭示叶绿体蛋白泛素化介导的光合作用调控新机制》

    • 来源专题:转基因生物新品种培育
    • 编译者:姜丽华
    • 发布时间:2022-12-05
    •        光合作用通过将二氧化碳转化为有机物,不仅提供地球上大多数生物的食物来源,而且释放氧气并控制大气中的二氧化碳含量。在全球碳中和的背景下,研究光合作用的调控机制,具有重要的理论意义和应用价值。叶绿体作为植物的关键细胞器,执行包括光合作用在内的核心代谢过程。叶绿体功能的建立和维持需要对其蛋白质稳态进行精确调节。然而,光合作用许多核心组分的调控机制目前未知。   近期研究发现的叶绿体蛋白降解途径——Chloroplast-associated Protein Degradation(CHLORAD),通过泛素-蛋白酶体系统调控叶绿体蛋白转运,改变叶绿体蛋白质稳态,介导植物的器官发育和抗逆境过程。在CHLORAD系统中,E3泛素连接酶SP1、通道蛋白SP2以及起到“分子马达”作用的CDC48分子伴侣蛋白,共同参与对叶绿体蛋白的泛素化修饰以及从叶绿体向细胞质的逆向转运过程,以便被细胞质中的蛋白酶体所降解。以往研究仅揭示了位于叶绿体外膜的TOC蛋白复合体成员可被CHLORAD降解。而多数叶绿体蛋白位于细胞器内部,CHLORAD是否可直接作用于这些内部的底物尚无证据。   11月17日,中国科学院分子植物科学卓越创新中心凌祺桦研究组与英国牛津大学植物科学系教授Paul Jarvis研究组合作,在Science Advances上,在线发表了题为Ubiquitination acts inside chloroplasts to directly regulate photosynthesis的研究论文。该研究发现CHLORAD直接参与调控更广泛的叶绿体靶蛋白。这些靶蛋白包括一些叶绿体内部的蛋白(如内膜、基质和类囊体蛋白),表明CHLORAD对叶绿体的作用已延伸到细胞器的内部。这些蛋白涉及叶绿体功能的各领域,例如光合作用、脂质代谢、物质转运、逆境抗性等,显示该途径调控了比预期更广泛的目标蛋白,拓展了CHLORAD的生物学意义。   科研团队综合应用定量蛋白质组学、泛素化修饰组学、比较转录组学、脂质代谢组学、生物化学、细胞生物学、植物生理学等技术手段,系统性地揭示了叶绿体内部的许多蛋白(包括类囊体膜中的光系统I、II组分)存在泛素化修饰。研究发现许多由叶绿体基因组自身编码的相关蛋白发生了修饰,显示了泛素化修饰作用于叶绿体内部蛋白。研究进一步阐明了CHLORAD组分CDC48和SP2介导泛素化光系统蛋白(如PsaA、CP43)逆向转运和降解的新途径。该成果揭示了过去未发现的叶绿体内部蛋白降解途径以及调控光合作用的崭新模式。迄今为止,研究认为,位于叶绿体内部的蛋白主要由原核生物起源的蛋白酶(即FtsH、Deg、Clp等)在细胞器内部调节。然而,本研究发现CHLORAD系统可联合运用叶绿体和细胞质内的泛素-蛋白酶体系统协同调控光系统运作效率和叶绿体其他重要功能,如脂质代谢等。这一新途径在栽培植物的改良中具有潜在的应用前景,可望为粮食安全和碳中和做出贡献。   研究工作得到中国科学院战略性先导科技专项、国家自然科学基金、英国生物技术和生物科学研究理事会(BBSRC)等的支持。