《bioRxiv,6月13日,Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon》

  • 来源专题:COVID-19科研动态监测
  • 编译者: xuwenwhlib
  • 发布时间:2020-06-14
  • Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon

    Lydia J Finney, Nicholas Glanville, Hugo Farne, Julia Aniscenko, Peter Fenwick, Samuel Kemp, Maria-Belen Trujillo-Torralbo, Maria Calderazzo, Jadwiga A Wedzicha, Patrick Mallia, Nathan W Bartlett, Sebastian L Johnston, Aran Singanayagam

    doi: https://doi.org/10.1101/2020.06.13.149039

    Abstract

    Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is a new rapidly spreading infectious disease. Early reports of hospitalised COVID-19 cases have shown relatively low frequency of chronic lung diseases such as chronic obstructive pulmonary disease (COPD) but increased risk of adverse outcome. The mechanisms of altered susceptibility to viral acquisition and/or severe disease in at-risk groups are poorly understood. Inhaled corticosteroids (ICS) are widely used in the treatment of COPD but the extent to which these therapies protect or expose patients with a COPD to risk of increased COVID-19 severity is unknown. Here, using a combination of human and animal in vitro and in vivo disease models, we show that ICS administration attenuates pulmonary expression of the SARS-CoV-2 viral entry receptor angiotensin-converting enzyme (ACE)-2. This effect was mechanistically driven by suppression of type I interferon as exogenous interferon-β reversed ACE2 downregulation by ICS. Mice deficient in the type I interferon-α/β receptor (Ifnar1−/−) also had reduced expression of ACE2. Collectively, these data suggest that use of ICS therapies in COPD reduces expression of the SARS-CoV-2 entry receptor ACE2 and this effect may thus contribute to altered susceptibility to COVID-19 in patients with COPD.

  • 原文来源:https://www.biorxiv.org/content/10.1101/2020.06.13.149039v1
相关报告
  • 《bioRxiv,6月13日,Receptor utilization of angiotensin converting enzyme 2 (ACE2) indicates a narrower host range of SARS-CoV-2 than that of SARS-CoV》

    • 来源专题:COVID-19科研动态监测
    • 编译者:xuwenwhlib
    • 发布时间:2020-06-14
    • Single-cell transcriptomic analysis of SARS-CoV-2 reactive CD4+ T cells Benjamin J Meckiff, Ciro Ramirez-Suastegui, Vicente Fajardo, Serena J Chee, Anthony Kusnadi, Hayley Simon, Alba Grifoni, Emanuela Pelosi, Daniela Weiskopf, Alessandro Sette, Ferhat Ay, Gregory Seumois, Christian Ottensmeier, Pandurangan Vijayanand doi: https://doi.org/10.1101/2020.06.12.148916 Abstract The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present large-scale single-cell transcriptomic analysis of viral antigen-reactive CD4+ T cells from 32 COVID-19 patients. In patients with severe disease compared to mild disease, we found increased proportions of cytotoxic follicular helper (TFH) cells and cytotoxic T helper cells (CD4-CTLs) responding to SARS-CoV-2, and reduced proportion of SARS-CoV-2 reactive regulatory T cells. Importantly, the CD4-CTLs were highly enriched for the expression of transcripts encoding chemokines that are involved in the recruitment of myeloid cells and dendritic cells to the sites of viral infection. Polyfunctional T helper (TH)1 cells and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide so far unprecedented insights into the gene expression patterns of SARS-CoV-2 reactive CD4+ T cells in distinct disease severities.
  • 《BioRxiv,4月10日,Type 2 and interferon inflammation strongly regulate SARS-CoV-2 related gene expression in the airway epithelium》

    • 来源专题:COVID-19科研动态监测
    • 编译者:zhangmin
    • 发布时间:2020-04-29
    • Type 2 and interferon inflammation strongly regulate SARS-CoV-2 related gene expression in the airway epithelium Satria P. Sajuthi, Peter DeFord, Nathan D. Jackson, Michael T. Montgomery, Jamie L. Everman, Cydney L. Rios, Elmar Pruesse, James D. Nolin, Elizabeth G. Plender, Michael E. Wechsler, Angel CY Mak, Celeste Eng, Sandra Salazar, Vivian Medina, Eric M. Wohlford, Scott Huntsman, Deborah A. Nickerson, Soren Germer, Michael C. Zody, Gonçalo Abecasis, Hyun Min Kang, Kenneth M. Rice, Rajesh Kumar, Sam Oh, Jose Rodriguez-Santana, Esteban G. Burchard, Max A. Seibold doi: https://doi.org/10.1101/2020.04.09.034454 Abstract Coronavirus disease 2019 (COVID-19) outcomes vary from asymptomatic infection to death. This disparity may reflect different airway levels of the SARS-CoV-2 receptor, ACE2, and the spike protein activator, TMPRSS2. Here we explore the role of genetics and co-expression networks in regulating these genes in the airway, through the analysis of nasal airway transcriptome data from 695 children. We identify expression quantitative trait loci (eQTL) for both ACE2 and TMPRSS2, that vary in frequency across world populations. Importantly, we find TMPRSS2 is part of a mucus secretory network, highly upregulated by T2 inflammation through the action of interleukin-13, and that interferon response to respiratory viruses highly upregulates ACE2 expression. Finally, we define airway responses to coronavirus infections in children, finding that these infections upregulate IL6 while also stimulating a more pronounced cytotoxic immune response relative to other respiratory viruses. Our results reveal mechanisms likely influencing SARS-CoV-2 infectivity and COVID-19 clinical outcomes. *注,本文为预印本论文手稿,是未经同行评审的初步报告,其观点仅供科研同行交流,并不是结论性内容,请使用者谨慎使用.