《香港科技大学范智勇:金属卤化物钙钛矿量子点的制备方法》

  • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
  • 编译者: 冯瑞华
  • 发布时间:2022-04-07
  • 金属卤化物钙钛矿凭借其优异的光物理性能(例如有效的辐射复合、较高的色纯度、带隙可调性等)和简便的溶液操作,已成为高效平面发光二极管 (light-emitting diodes,LEDs) 的强有力竞争者,在光学显示器和照明方面具有巨大商业潜力。目前,提高 LEDs 性能的主流方法是通过减小晶粒尺寸以增强空间激子限域(量子限域效应)和钝化晶界以抑制非辐射复合来提高材料的光致发光量子产率 (photoluminescence quantum yield,PLQY)。尽管胶体钙钛矿量子点 (quantum dots,QD)获得了很高的 PLQY,但是由于发射光子输出耦合效率差 (out-coupling efficiency,OCE ),导致只有~50%的发射光从活性层中逸出。更为重要的是,由于钙钛矿成膜的不均匀性以及材料稳定性差(较低的耐湿性限制在手套箱中进行)等问题,加之基板尺寸限制,通过广泛采用的旋涂方法制造出具有大面积或非平面(曲面)LEDs具有巨大的挑战。

    鉴于此,香港科技大学范智勇团队采用近距离气相反应方法(CSVR)在疏水多孔氧化铝膜 (porous alumina membranes,PAM) 中展示了具有高度均匀的结晶钙钛矿量子线 (quantum-wire,QWs) 阵列。该生长方法具有普适性,改变不同组分的金属卤化物钙钛矿(即 APbX3(A = Cs,MA);X = I、Br、Cl 或组合)均可实现在大面积平面和 3D 球形基底上成功制备,并且PL覆盖整个可见光波段(蓝色、青色、绿色和红色)。MAPbBr3 QWs 阵列在环境条件下显示 92% 的PLQY和保持 50% PL (TPL50) 的时间为 5,644 小时。将MAPbBr3 QWs用于平面 LED,在环境条件下具有 31,667 cd m-2 的高峰值亮度和 16.9 小时的长寿命。受益于 PAM 基板、CSVR 工艺和空穴传输层 (HTL) 蒸发的可扩展性,MAPbBr3 QWs LED 表现出优异的可扩展性。通过该方法实现了具有电致发光 (electroluminescence,EL) 的四英寸晶圆级 LED 器件的成功制备,并且CSVR QWs 生长的共形特性能够制造出独特的 3D 球形 LED 器件。

相关报告
  • 《山东大学团队在制备高质量金属卤化物钙钛矿纳米晶取得重要进展》

    • 来源专题:中国科学院文献情报制造与材料知识资源中心—领域情报网
    • 编译者:冯瑞华
    • 发布时间:2022-01-26
    • 山东大学前沿交叉科学青岛研究院分子科学与工程研究院韩克利教授团队在制备高质量金属卤化物钙钛矿纳米晶方面取得重要进展,利用锗卤化物作为理想的前驱体设计了一种更有效、毒性更小的制备高光电性能金属卤化物钙钛矿纳米晶体的途径,使所制备的纳米晶的光电质量得到了明显改善。相关研究成果以“Germanium Halides Serving as Ideal Precursors: Designing A More Effective and Less Toxic Route to High Optoelectronic Quality metal Halide Perovskite Nanocrystals”为题发表在国际学术期刊Nano Letters上。山东大学是该论文的第一完成单位,前沿交叉科学青岛研究院2019级硕士研究生王晓晨和2020级博士研究生柏天新为该论文共同第一作者,韩克利教授和刘锋研究员为该论文的共同通讯作者。 金属卤化物钙钛矿纳米晶由于显着的尺寸特性和结构稳定性受到了广泛关注。然而,铅基和非铅钙钛矿纳米晶的三前驱体合成面临着非常相似的挑战:目前选择的卤化物前驱体主要局限于有毒并且高度易燃的有机卤化物,这将大大限制它们的大规模应用。另外,这些有机卤化物制备的大多数纳米晶由于卤素缺陷导致其光致发光性能较差。而很多无机金属卤化物又会同时将金属阳离子引入钙钛矿晶格,从而不可避免地改变目标材料的晶体结构。因此,寻找合适的卤化物前驱体变得越来越重要。 在本工作中,该团队创新性地提出了将全无机锗盐GeX4(X = Cl、Br、I)作为稳定且低危险性的卤化物前驱体。不同于大多数其他无机卤化物前驱体,GeX4化合物不会将Ge元素传递到最终化合物中,而所得纳米晶的发光强度、荧光寿命、光致发光量子产率和相稳定性都得到了明显改善。这可归功于Ge卤化物中卤素离子释放过程的良好调控,这有助于增加所得钙钛矿纳米晶的卤化物组成,从而减少或消除与卤化物空位相关的陷阱态。并且理论计算表明,锗卤化物在介电环境和热力学中都提供了有利的条件,这有助于形成尺寸受限的缺陷抑制的纳米粒子。该研究为制备高质量的钙钛矿纳米材料并调整其光电特性提供了一条光明道路。
  • 《华中科技大学报道来自Ce基金属卤化物的高效深蓝色电致发光》

    • 来源专题:关键原材料知识服务平台
    • 编译者:费鹏飞
    • 发布时间:2025-04-11
    • 7月24日,华中科技大学在《Nature Communications》上发表题为“Efficient deep-blue electroluminescence from Ce-based metal halide”的论文,报道Ce基卤化物高效深蓝光电致发光器件的研究。 显示屏是人机交互的最基本设备,为了实现高质量显示,高效稳定的电致蓝光技术是科研界和产业界亟待攻破的重点和难点,具有极大科研与应用价值。金属卤化物钙钛矿材料,由于其成本低廉、制备简单和光学性能优异,在下一代显示应用中具有极大的前景。然而,蓝色发光二极管(LED)的发展,尤其是符合REC. 2020标准的深蓝色LED,远远落后于绿色和红色LED。因此,开发高效率、高色纯度、高稳定性、低成本的新型蓝色发光卤化物材料势在必行。 具有宇称允许的d-f跃迁镧系离子(Ce3+、Eu2+)色纯度优异、辐射复合速率快、光转换效率高,是制备电致蓝光器件的理想材料。然而,其局域化的4f轨道受外层电子轨道屏蔽,载流子注入效率低。早期研究主要采用交流电驱动的薄膜电致发光器件,利用电子碰撞离化激发掺杂在发光层中的稀土离子。该策略往往需要高电压来加速电子,这导致高工作电压(> 100 V)和低外量子效率(< 1%)。 研究团队发现Ce(Ⅲ)基金属卤化物Cs3CeI6中的能量转移过程可以有效避免载流子直接注入过程中外层电子轨道的屏蔽效应,并通过进一步优化能量转移过程,实现了高效的电致蓝光器件。在原理探索上,团队通过基态和激发态下X射线光电子能谱探究了电荷转移过程,证明了激发态下的自限域激子(STE)和Ce基Frenkel激子(CFE)的形成。并进一步通过时间分辨的光致发光谱和瞬态吸收谱研究了从STE到CFE的能量转移动力学过程。在器件制备过程中,团队通过在蒸发过程中加入过量的CsI,增加了STE和CFE之间的光谱重叠面积,提高了能量转移效率。在此基础上,团队制备了基于Cs3CeI6的稀土基发光二极管,其最大亮度和外量子效率(EQE)分别达到了1075 cd m-2和7.9%,这是迄今为止金属卤化物深蓝光发光二极管的最高效率。这一工作有助于构建镧系卤化物的电致发光模型,充分展现了其在电致蓝光方面的应用潜力。